Metamath Proof Explorer


Theorem rspc6v

Description: 6-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc6v.1 x = A φ χ
rspc6v.2 y = B χ θ
rspc6v.3 z = C θ τ
rspc6v.4 w = D τ η
rspc6v.5 p = E η ζ
rspc6v.6 q = F ζ ψ
Assertion rspc6v A R B S C T D U E V F W x R y S z T w U p V q W φ ψ

Proof

Step Hyp Ref Expression
1 rspc6v.1 x = A φ χ
2 rspc6v.2 y = B χ θ
3 rspc6v.3 z = C θ τ
4 rspc6v.4 w = D τ η
5 rspc6v.5 p = E η ζ
6 rspc6v.6 q = F ζ ψ
7 1 2ralbidv x = A p V q W φ p V q W χ
8 2 2ralbidv y = B p V q W χ p V q W θ
9 3 2ralbidv z = C p V q W θ p V q W τ
10 4 2ralbidv w = D p V q W τ p V q W η
11 7 8 9 10 rspc4v A R B S C T D U x R y S z T w U p V q W φ p V q W η
12 5 6 rspc2v E V F W p V q W η ψ
13 11 12 syl9 A R B S C T D U E V F W x R y S z T w U p V q W φ ψ
14 13 3impia A R B S C T D U E V F W x R y S z T w U p V q W φ ψ