Metamath Proof Explorer


Theorem rspc8v

Description: 8-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc8v.1 x = A φ χ
rspc8v.2 y = B χ θ
rspc8v.3 z = C θ τ
rspc8v.4 w = D τ η
rspc8v.5 p = E η ζ
rspc8v.6 q = F ζ σ
rspc8v.7 r = G σ ρ
rspc8v.8 s = H ρ ψ
Assertion rspc8v A R B S C T D U E V F W G X H Y x R y S z T w U p V q W r X s Y φ ψ

Proof

Step Hyp Ref Expression
1 rspc8v.1 x = A φ χ
2 rspc8v.2 y = B χ θ
3 rspc8v.3 z = C θ τ
4 rspc8v.4 w = D τ η
5 rspc8v.5 p = E η ζ
6 rspc8v.6 q = F ζ σ
7 rspc8v.7 r = G σ ρ
8 rspc8v.8 s = H ρ ψ
9 1 4ralbidv x = A p V q W r X s Y φ p V q W r X s Y χ
10 2 4ralbidv y = B p V q W r X s Y χ p V q W r X s Y θ
11 3 4ralbidv z = C p V q W r X s Y θ p V q W r X s Y τ
12 4 4ralbidv w = D p V q W r X s Y τ p V q W r X s Y η
13 9 10 11 12 rspc4v A R B S C T D U x R y S z T w U p V q W r X s Y φ p V q W r X s Y η
14 5 6 7 8 rspc4v E V F W G X H Y p V q W r X s Y η ψ
15 13 14 sylan9 A R B S C T D U E V F W G X H Y x R y S z T w U p V q W r X s Y φ ψ