Metamath Proof Explorer


Theorem rspcdf

Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypotheses rspcdf.1 x φ
rspcdf.2 x χ
rspcdf.3 φ A B
rspcdf.4 φ x = A ψ χ
Assertion rspcdf φ x B ψ χ

Proof

Step Hyp Ref Expression
1 rspcdf.1 x φ
2 rspcdf.2 x χ
3 rspcdf.3 φ A B
4 rspcdf.4 φ x = A ψ χ
5 4 ex φ x = A ψ χ
6 1 5 alrimi φ x x = A ψ χ
7 2 rspct x x = A ψ χ A B x B ψ χ
8 6 3 7 sylc φ x B ψ χ