Metamath Proof Explorer


Theorem rspcdva

Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypotheses rspcdva.1 x = C ψ χ
rspcdva.2 φ x A ψ
rspcdva.3 φ C A
Assertion rspcdva φ χ

Proof

Step Hyp Ref Expression
1 rspcdva.1 x = C ψ χ
2 rspcdva.2 φ x A ψ
3 rspcdva.3 φ C A
4 1 rspcv C A x A ψ χ
5 3 2 4 sylc φ χ