Metamath Proof Explorer


Theorem rspce

Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses rspc.1 xψ
rspc.2 x=Aφψ
Assertion rspce ABψxBφ

Proof

Step Hyp Ref Expression
1 rspc.1 xψ
2 rspc.2 x=Aφψ
3 nfcv _xA
4 nfv xAB
5 4 1 nfan xABψ
6 eleq1 x=AxBAB
7 6 2 anbi12d x=AxBφABψ
8 3 5 7 spcegf ABABψxxBφ
9 8 anabsi5 ABψxxBφ
10 df-rex xBφxxBφ
11 9 10 sylibr ABψxBφ