Metamath Proof Explorer


Theorem rspce

Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses rspc.1 x ψ
rspc.2 x = A φ ψ
Assertion rspce A B ψ x B φ

Proof

Step Hyp Ref Expression
1 rspc.1 x ψ
2 rspc.2 x = A φ ψ
3 nfcv _ x A
4 nfv x A B
5 4 1 nfan x A B ψ
6 eleq1 x = A x B A B
7 6 2 anbi12d x = A x B φ A B ψ
8 3 5 7 spcegf A B A B ψ x x B φ
9 8 anabsi5 A B ψ x x B φ
10 df-rex x B φ x x B φ
11 9 10 sylibr A B ψ x B φ