Metamath Proof Explorer


Theorem rspceaimv

Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)

Ref Expression
Hypothesis rspceaimv.1 x = A φ ψ
Assertion rspceaimv A B y C ψ χ x B y C φ χ

Proof

Step Hyp Ref Expression
1 rspceaimv.1 x = A φ ψ
2 1 imbi1d x = A φ χ ψ χ
3 2 ralbidv x = A y C φ χ y C ψ χ
4 3 rspcev A B y C ψ χ x B y C φ χ