Metamath Proof Explorer


Theorem rspceb2dv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses rspceb2dv.1 φ x B ψ χ
rspceb2dv.2 φ χ A B
rspceb2dv.3 φ χ θ
rspceb2dv.4 x = A ψ θ
Assertion rspceb2dv φ x B ψ χ

Proof

Step Hyp Ref Expression
1 rspceb2dv.1 φ x B ψ χ
2 rspceb2dv.2 φ χ A B
3 rspceb2dv.3 φ χ θ
4 rspceb2dv.4 x = A ψ θ
5 1 rexlimdva φ x B ψ χ
6 4 rspcev A B θ x B ψ
7 2 3 6 syl2anc φ χ x B ψ
8 7 ex φ χ x B ψ
9 5 8 impbid φ x B ψ χ