Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution in
both directions. (Contributed by AV, 8-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
rspcdv.1 |
|
|
|
rspcdv.2 |
|
|
|
rspcebdv.1 |
|
|
Assertion |
rspcebdv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcdv.1 |
|
2 |
|
rspcdv.2 |
|
3 |
|
rspcebdv.1 |
|
4 |
3 2
|
syldan |
|
5 |
4
|
biimpd |
|
6 |
5
|
expcom |
|
7 |
6
|
pm2.43b |
|
8 |
7
|
rexlimdvw |
|
9 |
1 2
|
rspcedv |
|
10 |
8 9
|
impbid |
|