Metamath Proof Explorer


Theorem rspcebdv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses rspcdv.1 φ A B
rspcdv.2 φ x = A ψ χ
rspcebdv.1 φ ψ x = A
Assertion rspcebdv φ x B ψ χ

Proof

Step Hyp Ref Expression
1 rspcdv.1 φ A B
2 rspcdv.2 φ x = A ψ χ
3 rspcebdv.1 φ ψ x = A
4 3 2 syldan φ ψ ψ χ
5 4 biimpd φ ψ ψ χ
6 5 expcom ψ φ ψ χ
7 6 pm2.43b φ ψ χ
8 7 rexlimdvw φ x B ψ χ
9 1 2 rspcedv φ χ x B ψ
10 8 9 impbid φ x B ψ χ