Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution in
both directions. (Contributed by AV, 8-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
rspcdv.1 |
|
|
|
rspcdv.2 |
|
|
|
rspcebdv.1 |
|
|
Assertion |
rspcebdv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspcdv.1 |
|
| 2 |
|
rspcdv.2 |
|
| 3 |
|
rspcebdv.1 |
|
| 4 |
3 2
|
syldan |
|
| 5 |
4
|
biimpd |
|
| 6 |
5
|
expcom |
|
| 7 |
6
|
pm2.43b |
|
| 8 |
7
|
rexlimdvw |
|
| 9 |
1 2
|
rspcedv |
|
| 10 |
8 9
|
impbid |
|