Metamath Proof Explorer


Theorem rspced

Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rspced.1 x χ
rspced.2 _ x A
rspced.3 _ x B
rspced.4 φ A B
rspced.5 φ χ
rspced.6 x = A ψ χ
Assertion rspced φ x B ψ

Proof

Step Hyp Ref Expression
1 rspced.1 x χ
2 rspced.2 _ x A
3 rspced.3 _ x B
4 rspced.4 φ A B
5 rspced.5 φ χ
6 rspced.6 x = A ψ χ
7 1 2 3 6 rspcef A B χ x B ψ
8 4 5 7 syl2anc φ x B ψ