Metamath Proof Explorer


Theorem rspcedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcdv.1 φ A B
rspcdv.2 φ x = A ψ χ
Assertion rspcedv φ χ x B ψ

Proof

Step Hyp Ref Expression
1 rspcdv.1 φ A B
2 rspcdv.2 φ x = A ψ χ
3 2 biimprd φ x = A χ ψ
4 1 3 rspcimedv φ χ x B ψ