Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rspcedv
Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by FL , 17-Apr-2007) (Revised by Mario Carneiro , 4-Jan-2017)
Ref
Expression
Hypotheses
rspcdv.1
⊢ φ → A ∈ B
rspcdv.2
⊢ φ ∧ x = A → ψ ↔ χ
Assertion
rspcedv
⊢ φ → χ → ∃ x ∈ B ψ
Proof
Step
Hyp
Ref
Expression
1
rspcdv.1
⊢ φ → A ∈ B
2
rspcdv.2
⊢ φ ∧ x = A → ψ ↔ χ
3
2
biimprd
⊢ φ ∧ x = A → χ → ψ
4
1 3
rspcimedv
⊢ φ → χ → ∃ x ∈ B ψ