Metamath Proof Explorer


Theorem rspcedvd

Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv . (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses rspcedvd.1 φ A B
rspcedvd.2 φ x = A ψ χ
rspcedvd.3 φ χ
Assertion rspcedvd φ x B ψ

Proof

Step Hyp Ref Expression
1 rspcedvd.1 φ A B
2 rspcedvd.2 φ x = A ψ χ
3 rspcedvd.3 φ χ
4 1 2 rspcedv φ χ x B ψ
5 3 4 mpd φ x B ψ