Metamath Proof Explorer


Theorem rspcegf

Description: A version of rspcev using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rspcegf.1 x ψ
rspcegf.2 _ x A
rspcegf.3 _ x B
rspcegf.4 x = A φ ψ
Assertion rspcegf A B ψ x B φ

Proof

Step Hyp Ref Expression
1 rspcegf.1 x ψ
2 rspcegf.2 _ x A
3 rspcegf.3 _ x B
4 rspcegf.4 x = A φ ψ
5 2 3 nfel x A B
6 5 1 nfan x A B ψ
7 eleq1 x = A x B A B
8 7 4 anbi12d x = A x B φ A B ψ
9 2 6 8 spcegf A B A B ψ x x B φ
10 9 anabsi5 A B ψ x x B φ
11 df-rex x B φ x x B φ
12 10 11 sylibr A B ψ x B φ