Metamath Proof Explorer


Theorem rspceov

Description: A frequently used special case of rspc2ev for operation values. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion rspceov C A D B S = C F D x A y B S = x F y

Proof

Step Hyp Ref Expression
1 oveq1 x = C x F y = C F y
2 1 eqeq2d x = C S = x F y S = C F y
3 oveq2 y = D C F y = C F D
4 3 eqeq2d y = D S = C F y S = C F D
5 2 4 rspc2ev C A D B S = C F D x A y B S = x F y