Metamath Proof Explorer


Theorem rspcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1 φ A B
rspcimdv.2 φ x = A ψ χ
Assertion rspcimdv φ x B ψ χ

Proof

Step Hyp Ref Expression
1 rspcimdv.1 φ A B
2 rspcimdv.2 φ x = A ψ χ
3 df-ral x B ψ x x B ψ
4 simpr φ x = A x = A
5 4 eleq1d φ x = A x B A B
6 5 biimprd φ x = A A B x B
7 6 2 imim12d φ x = A x B ψ A B χ
8 1 7 spcimdv φ x x B ψ A B χ
9 1 8 mpid φ x x B ψ χ
10 3 9 syl5bi φ x B ψ χ