Metamath Proof Explorer


Theorem rspcimedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1 φ A B
rspcimedv.2 φ x = A χ ψ
Assertion rspcimedv φ χ x B ψ

Proof

Step Hyp Ref Expression
1 rspcimdv.1 φ A B
2 rspcimedv.2 φ x = A χ ψ
3 2 con3d φ x = A ¬ ψ ¬ χ
4 1 3 rspcimdv φ x B ¬ ψ ¬ χ
5 4 con2d φ χ ¬ x B ¬ ψ
6 dfrex2 x B ψ ¬ x B ¬ ψ
7 5 6 syl6ibr φ χ x B ψ