Metamath Proof Explorer


Theorem rspct

Description: A closed version of rspc . (Contributed by Andrew Salmon, 6-Jun-2011)

Ref Expression
Hypothesis rspct.1 x ψ
Assertion rspct x x = A φ ψ A B x B φ ψ

Proof

Step Hyp Ref Expression
1 rspct.1 x ψ
2 df-ral x B φ x x B φ
3 eleq1 x = A x B A B
4 3 adantr x = A φ ψ x B A B
5 simpr x = A φ ψ φ ψ
6 4 5 imbi12d x = A φ ψ x B φ A B ψ
7 6 ex x = A φ ψ x B φ A B ψ
8 7 a2i x = A φ ψ x = A x B φ A B ψ
9 8 alimi x x = A φ ψ x x = A x B φ A B ψ
10 nfv x A B
11 10 1 nfim x A B ψ
12 nfcv _ x A
13 11 12 spcgft x x = A x B φ A B ψ A B x x B φ A B ψ
14 9 13 syl x x = A φ ψ A B x x B φ A B ψ
15 2 14 syl7bi x x = A φ ψ A B x B φ A B ψ
16 15 com34 x x = A φ ψ A B A B x B φ ψ
17 16 pm2.43d x x = A φ ψ A B x B φ ψ