Metamath Proof Explorer


Theorem rspcva

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005)

Ref Expression
Hypothesis rspcv.1 x = A φ ψ
Assertion rspcva A B x B φ ψ

Proof

Step Hyp Ref Expression
1 rspcv.1 x = A φ ψ
2 1 rspcv A B x B φ ψ
3 2 imp A B x B φ ψ