Metamath Proof Explorer


Theorem rspesbca

Description: Existence form of rspsbca . (Contributed by NM, 29-Feb-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion rspesbca A B [˙A / x]˙ φ x B φ

Proof

Step Hyp Ref Expression
1 dfsbcq2 y = A y x φ [˙A / x]˙ φ
2 1 rspcev A B [˙A / x]˙ φ y B y x φ
3 cbvrexsvw x B φ y B y x φ
4 2 3 sylibr A B [˙A / x]˙ φ x B φ