Metamath Proof Explorer


Theorem rspn0

Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion rspn0 A x A φ φ

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 df-ral x A φ x x A φ
3 exim x x A φ x x A x φ
4 ax5e x φ φ
5 3 4 syl6com x x A x x A φ φ
6 2 5 syl5bi x x A x A φ φ
7 1 6 sylbi A x A φ φ