Metamath Proof Explorer


Theorem rsprprmprmidl

Description: In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rsprprmprmidl.k K = RSpan R
rsprprmprmidl.r φ R CRing
rsprprmprmidl.p φ P RPrime R
Assertion rsprprmprmidl Could not format assertion : No typesetting found for |- ( ph -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rsprprmprmidl.k K = RSpan R
2 rsprprmprmidl.r φ R CRing
3 rsprprmprmidl.p φ P RPrime R
4 2 crngringd φ R Ring
5 eqid Base R = Base R
6 eqid RPrime R = RPrime R
7 5 6 2 3 rprmcl φ P Base R
8 7 snssd φ P Base R
9 eqid LIdeal R = LIdeal R
10 1 5 9 rspcl R Ring P Base R K P LIdeal R
11 4 8 10 syl2anc φ K P LIdeal R
12 eqid 1 R = 1 R
13 5 12 ringidcl R Ring 1 R Base R
14 4 13 syl φ 1 R Base R
15 eqid Unit R = Unit R
16 6 15 2 3 rprmnunit φ ¬ P Unit R
17 2 adantr φ P r R 1 R R CRing
18 simpr φ P r R 1 R P r R 1 R
19 15 12 1unit R Ring 1 R Unit R
20 4 19 syl φ 1 R Unit R
21 20 adantr φ P r R 1 R 1 R Unit R
22 eqid r R = r R
23 15 22 dvdsunit R CRing P r R 1 R 1 R Unit R P Unit R
24 17 18 21 23 syl3anc φ P r R 1 R P Unit R
25 16 24 mtand φ ¬ P r R 1 R
26 5 1 22 4 7 ellpi φ 1 R K P P r R 1 R
27 25 26 mtbird φ ¬ 1 R K P
28 nelne1 1 R Base R ¬ 1 R K P Base R K P
29 14 27 28 syl2anc φ Base R K P
30 29 necomd φ K P Base R
31 5 1 22 4 7 ellpi φ x K P P r R x
32 31 ad3antrrr φ x Base R y Base R x R y K P x K P P r R x
33 32 biimpar φ x Base R y Base R x R y K P P r R x x K P
34 4 ad2antrr φ x Base R y Base R R Ring
35 34 adantr φ x Base R y Base R x R y K P R Ring
36 7 ad2antrr φ x Base R y Base R P Base R
37 36 adantr φ x Base R y Base R x R y K P P Base R
38 5 1 22 35 37 ellpi φ x Base R y Base R x R y K P y K P P r R y
39 38 biimpar φ x Base R y Base R x R y K P P r R y y K P
40 eqid R = R
41 2 ad3antrrr φ x Base R y Base R x R y K P R CRing
42 3 ad3antrrr φ x Base R y Base R x R y K P P RPrime R
43 simpllr φ x Base R y Base R x R y K P x Base R
44 simplr φ x Base R y Base R x R y K P y Base R
45 5 1 22 34 36 ellpi φ x Base R y Base R x R y K P P r R x R y
46 45 biimpa φ x Base R y Base R x R y K P P r R x R y
47 5 6 22 40 41 42 43 44 46 rprmdvds φ x Base R y Base R x R y K P P r R x P r R y
48 33 39 47 orim12da φ x Base R y Base R x R y K P x K P y K P
49 48 ex φ x Base R y Base R x R y K P x K P y K P
50 49 anasss φ x Base R y Base R x R y K P x K P y K P
51 50 ralrimivva φ x Base R y Base R x R y K P x K P y K P
52 5 40 isprmidlc Could not format ( R e. CRing -> ( ( K ` { P } ) e. ( PrmIdeal ` R ) <-> ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) ) : No typesetting found for |- ( R e. CRing -> ( ( K ` { P } ) e. ( PrmIdeal ` R ) <-> ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) ) with typecode |-
53 52 biimpar Could not format ( ( R e. CRing /\ ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( R e. CRing /\ ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) with typecode |-
54 2 11 30 51 53 syl13anc Could not format ( ph -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ph -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) with typecode |-