Metamath Proof Explorer


Theorem rsprprmprmidlb

Description: In an integral domain, an ideal generated by a single element is a prime iff that element is prime. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rsprprmprmidlb.0 0 ˙ = 0 R
rsprprmprmidlb.b B = Base R
rsprprmprmidlb.p P = RPrime R
rsprprmprmidlb.k K = RSpan R
rsprprmprmidlb.r φ R IDomn
rsprprmprmidlb.x φ X B
rsprprmprmidlb.1 φ X 0 ˙
Assertion rsprprmprmidlb Could not format assertion : No typesetting found for |- ( ph -> ( X e. P <-> ( K ` { X } ) e. ( PrmIdeal ` R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rsprprmprmidlb.0 0 ˙ = 0 R
2 rsprprmprmidlb.b B = Base R
3 rsprprmprmidlb.p P = RPrime R
4 rsprprmprmidlb.k K = RSpan R
5 rsprprmprmidlb.r φ R IDomn
6 rsprprmprmidlb.x φ X B
7 rsprprmprmidlb.1 φ X 0 ˙
8 5 idomcringd φ R CRing
9 8 adantr φ X P R CRing
10 3 a1i φ P = RPrime R
11 10 eleq2d φ X P X RPrime R
12 11 biimpa φ X P X RPrime R
13 4 9 12 rsprprmprmidl Could not format ( ( ph /\ X e. P ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ X e. P ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) with typecode |-
14 5 adantr Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. IDomn ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. IDomn ) with typecode |-
15 6 adantr Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. B ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. B ) with typecode |-
16 eqid Unit R = Unit R
17 eqid K X = K X
18 16 4 17 2 15 14 unitpidl1 Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( ( K ` { X } ) = B <-> X e. ( Unit ` R ) ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( ( K ` { X } ) = B <-> X e. ( Unit ` R ) ) ) with typecode |-
19 18 biimpar Could not format ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) = B ) : No typesetting found for |- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) = B ) with typecode |-
20 14 idomringd Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. Ring ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. Ring ) with typecode |-
21 eqid R = R
22 2 21 prmidlnr Could not format ( ( R e. Ring /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) : No typesetting found for |- ( ( R e. Ring /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) with typecode |-
23 20 22 sylancom Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) with typecode |-
24 23 adantr Could not format ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) =/= B ) : No typesetting found for |- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) =/= B ) with typecode |-
25 24 neneqd Could not format ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> -. ( K ` { X } ) = B ) : No typesetting found for |- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> -. ( K ` { X } ) = B ) with typecode |-
26 19 25 pm2.65da Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( Unit ` R ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( Unit ` R ) ) with typecode |-
27 nelsn X 0 ˙ ¬ X 0 ˙
28 7 27 syl φ ¬ X 0 ˙
29 28 adantr Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. { .0. } ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. { .0. } ) with typecode |-
30 eqid Unit R 0 ˙ = Unit R 0 ˙
31 nelun Unit R 0 ˙ = Unit R 0 ˙ ¬ X Unit R 0 ˙ ¬ X Unit R ¬ X 0 ˙
32 30 31 ax-mp ¬ X Unit R 0 ˙ ¬ X Unit R ¬ X 0 ˙
33 26 29 32 sylanbrc Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( ( Unit ` R ) u. { .0. } ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( ( Unit ` R ) u. { .0. } ) ) with typecode |-
34 15 33 eldifd Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { .0. } ) ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { .0. } ) ) ) with typecode |-
35 eqid r R = r R
36 20 ad3antrrr Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. Ring ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. Ring ) with typecode |-
37 6 ad4antr Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> X e. B ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> X e. B ) with typecode |-
38 2 4 35 36 37 ellpi Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) <-> X ( ||r ` R ) x ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) <-> X ( ||r ` R ) x ) ) with typecode |-
39 38 biimpa Could not format ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ x e. ( K ` { X } ) ) -> X ( ||r ` R ) x ) : No typesetting found for |- ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ x e. ( K ` { X } ) ) -> X ( ||r ` R ) x ) with typecode |-
40 2 4 35 36 37 ellpi Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( y e. ( K ` { X } ) <-> X ( ||r ` R ) y ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( y e. ( K ` { X } ) <-> X ( ||r ` R ) y ) ) with typecode |-
41 40 biimpa Could not format ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ y e. ( K ` { X } ) ) -> X ( ||r ` R ) y ) : No typesetting found for |- ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ y e. ( K ` { X } ) ) -> X ( ||r ` R ) y ) with typecode |-
42 8 ad4antr Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. CRing ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. CRing ) with typecode |-
43 simp-4r Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) with typecode |-
44 simpllr Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> x e. B ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> x e. B ) with typecode |-
45 simplr Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> y e. B ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> y e. B ) with typecode |-
46 20 ad2antrr Could not format ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> R e. Ring ) : No typesetting found for |- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> R e. Ring ) with typecode |-
47 6 ad3antrrr Could not format ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> X e. B ) : No typesetting found for |- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> X e. B ) with typecode |-
48 2 4 35 46 47 ellpi Could not format ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( ( x ( .r ` R ) y ) e. ( K ` { X } ) <-> X ( ||r ` R ) ( x ( .r ` R ) y ) ) ) : No typesetting found for |- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( ( x ( .r ` R ) y ) e. ( K ` { X } ) <-> X ( ||r ` R ) ( x ( .r ` R ) y ) ) ) with typecode |-
49 48 biimpar Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) e. ( K ` { X } ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) e. ( K ` { X } ) ) with typecode |-
50 2 21 prmidlc Could not format ( ( ( R e. CRing /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B /\ ( x ( .r ` R ) y ) e. ( K ` { X } ) ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) : No typesetting found for |- ( ( ( R e. CRing /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B /\ ( x ( .r ` R ) y ) e. ( K ` { X } ) ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) with typecode |-
51 42 43 44 45 49 50 syl23anc Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) with typecode |-
52 39 41 51 orim12da Could not format ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) : No typesetting found for |- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) with typecode |-
53 52 ex Could not format ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) : No typesetting found for |- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) with typecode |-
54 53 anasss Could not format ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) : No typesetting found for |- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) with typecode |-
55 54 ralrimivva Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) with typecode |-
56 2 16 1 35 21 isrprm R IDomn X RPrime R X B Unit R 0 ˙ x B y B X r R x R y X r R x X r R y
57 56 biimpar R IDomn X B Unit R 0 ˙ x B y B X r R x R y X r R x X r R y X RPrime R
58 14 34 55 57 syl12anc Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( RPrime ` R ) ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( RPrime ` R ) ) with typecode |-
59 58 3 eleqtrrdi Could not format ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. P ) : No typesetting found for |- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. P ) with typecode |-
60 13 59 impbida Could not format ( ph -> ( X e. P <-> ( K ` { X } ) e. ( PrmIdeal ` R ) ) ) : No typesetting found for |- ( ph -> ( X e. P <-> ( K ` { X } ) e. ( PrmIdeal ` R ) ) ) with typecode |-