Metamath Proof Explorer


Theorem rspsbc2

Description: rspsbc with two quantifying variables. This proof is rspsbc2VD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rspsbc2 A B C D x B y D φ [˙C / y]˙ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 idd A B C D C D
2 rspsbc A B x B y D φ [˙A / x]˙ y D φ
3 2 a1d A B C D x B y D φ [˙A / x]˙ y D φ
4 sbcralg A B [˙A / x]˙ y D φ y D [˙A / x]˙ φ
5 4 biimpd A B [˙A / x]˙ y D φ y D [˙A / x]˙ φ
6 3 5 syl6d A B C D x B y D φ y D [˙A / x]˙ φ
7 rspsbc C D y D [˙A / x]˙ φ [˙C / y]˙ [˙A / x]˙ φ
8 1 6 7 syl10 A B C D x B y D φ [˙C / y]˙ [˙A / x]˙ φ