Metamath Proof Explorer


Theorem rspsn

Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses rspsn.b B = Base R
rspsn.k K = RSpan R
rspsn.d ˙ = r R
Assertion rspsn R Ring G B K G = x | G ˙ x

Proof

Step Hyp Ref Expression
1 rspsn.b B = Base R
2 rspsn.k K = RSpan R
3 rspsn.d ˙ = r R
4 eqcom x = a R G a R G = x
5 4 a1i R Ring G B x = a R G a R G = x
6 5 rexbidv R Ring G B a B x = a R G a B a R G = x
7 rlmlmod R Ring ringLMod R LMod
8 rlmsca2 I R = Scalar ringLMod R
9 baseid Base = Slot Base ndx
10 9 1 strfvi B = Base I R
11 rlmbas Base R = Base ringLMod R
12 1 11 eqtri B = Base ringLMod R
13 rlmvsca R = ringLMod R
14 rspval RSpan R = LSpan ringLMod R
15 2 14 eqtri K = LSpan ringLMod R
16 8 10 12 13 15 lspsnel ringLMod R LMod G B x K G a B x = a R G
17 7 16 sylan R Ring G B x K G a B x = a R G
18 eqid R = R
19 1 3 18 dvdsr2 G B G ˙ x a B a R G = x
20 19 adantl R Ring G B G ˙ x a B a R G = x
21 6 17 20 3bitr4d R Ring G B x K G G ˙ x
22 21 abbi2dv R Ring G B K G = x | G ˙ x