Metamath Proof Explorer


Theorem rspssid

Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K = RSpan R
rspcl.b B = Base R
Assertion rspssid R Ring G B G K G

Proof

Step Hyp Ref Expression
1 rspcl.k K = RSpan R
2 rspcl.b B = Base R
3 rlmlmod R Ring ringLMod R LMod
4 rlmbas Base R = Base ringLMod R
5 2 4 eqtri B = Base ringLMod R
6 rspval RSpan R = LSpan ringLMod R
7 1 6 eqtri K = LSpan ringLMod R
8 5 7 lspssid ringLMod R LMod G B G K G
9 3 8 sylan R Ring G B G K G