Metamath Proof Explorer


Theorem rspw

Description: Restricted specialization. Weak version of rsp , requiring ax-8 , but not ax-12 . (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypothesis rspw.1 x = y φ ψ
Assertion rspw x A φ x A φ

Proof

Step Hyp Ref Expression
1 rspw.1 x = y φ ψ
2 df-ral x A φ x x A φ
3 eleq1w x = y x A y A
4 3 1 imbi12d x = y x A φ y A ψ
5 4 spw x x A φ x A φ
6 2 5 sylbi x A φ x A φ