Metamath Proof Explorer


Theorem rtprmirr

Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023)

Ref Expression
Assertion rtprmirr P N 2 P 1 N

Proof

Step Hyp Ref Expression
1 prmnn P P
2 1 adantr P N 2 P
3 2 nnred P N 2 P
4 0red P N 2 0
5 2 nngt0d P N 2 0 < P
6 4 3 5 ltled P N 2 0 P
7 eluzelre N 2 N
8 7 adantl P N 2 N
9 eluz2n0 N 2 N 0
10 9 adantl P N 2 N 0
11 8 10 rereccld P N 2 1 N
12 3 6 11 recxpcld P N 2 P 1 N
13 eluz2gt1 N 2 1 < N
14 recgt1i N 1 < N 0 < 1 N 1 N < 1
15 7 13 14 syl2anc N 2 0 < 1 N 1 N < 1
16 15 simprd N 2 1 N < 1
17 16 adantl P N 2 1 N < 1
18 prmgt1 P 1 < P
19 18 adantr P N 2 1 < P
20 1red P N 2 1
21 3 19 11 20 cxpltd P N 2 1 N < 1 P 1 N < P 1
22 17 21 mpbid P N 2 P 1 N < P 1
23 2 nncnd P N 2 P
24 23 cxp1d P N 2 P 1 = P
25 22 24 breqtrd P N 2 P 1 N < P
26 12 25 ltned P N 2 P 1 N P
27 26 neneqd P N 2 ¬ P 1 N = P
28 27 adantr P N 2 P 1 N ¬ P 1 N = P
29 23 cxp0d P N 2 P 0 = 1
30 15 simpld N 2 0 < 1 N
31 30 adantl P N 2 0 < 1 N
32 3 19 4 11 cxpltd P N 2 0 < 1 N P 0 < P 1 N
33 31 32 mpbid P N 2 P 0 < P 1 N
34 29 33 eqbrtrrd P N 2 1 < P 1 N
35 20 34 gtned P N 2 P 1 N 1
36 35 neneqd P N 2 ¬ P 1 N = 1
37 36 adantr P N 2 P 1 N ¬ P 1 N = 1
38 dvdsprime P P 1 N P 1 N P P 1 N = P P 1 N = 1
39 38 adantlr P N 2 P 1 N P 1 N P P 1 N = P P 1 N = 1
40 39 biimpd P N 2 P 1 N P 1 N P P 1 N = P P 1 N = 1
41 28 37 40 mtord P N 2 P 1 N ¬ P 1 N P
42 nan P N 2 ¬ P 1 N P 1 N P P N 2 P 1 N ¬ P 1 N P
43 41 42 mpbir P N 2 ¬ P 1 N P 1 N P
44 prmz P P
45 44 3ad2ant1 P N 2 P 1 N P
46 eluz2nn N 2 N
47 46 3ad2ant2 P N 2 P 1 N N
48 simp3 P N 2 P 1 N P 1 N
49 zrtdvds P N P 1 N P 1 N P
50 45 47 48 49 syl3anc P N 2 P 1 N P 1 N P
51 50 3expia P N 2 P 1 N P 1 N P
52 51 ancld P N 2 P 1 N P 1 N P 1 N P
53 43 52 mtod P N 2 ¬ P 1 N
54 1 nnrpd P P +
55 54 3ad2ant1 P N 2 P 1 N P +
56 7 3ad2ant2 P N 2 P 1 N N
57 9 3ad2ant2 P N 2 P 1 N N 0
58 56 57 rereccld P N 2 P 1 N 1 N
59 55 58 cxpgt0d P N 2 P 1 N 0 < P 1 N
60 59 3expia P N 2 P 1 N 0 < P 1 N
61 60 ancld P N 2 P 1 N P 1 N 0 < P 1 N
62 elnnz P 1 N P 1 N 0 < P 1 N
63 61 62 imbitrrdi P N 2 P 1 N P 1 N
64 53 63 mtod P N 2 ¬ P 1 N
65 44 3ad2ant1 P N 2 P 1 N P
66 46 3ad2ant2 P N 2 P 1 N N
67 simp3 P N 2 P 1 N P 1 N
68 zrtelqelz P N P 1 N P 1 N
69 65 66 67 68 syl3anc P N 2 P 1 N P 1 N
70 69 3expia P N 2 P 1 N P 1 N
71 64 70 mtod P N 2 ¬ P 1 N
72 12 71 eldifd P N 2 P 1 N