Metamath Proof Explorer


Theorem rtrclreclem3

Description: The reflexive, transitive closure is indeed transitive. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020)

Ref Expression
Hypotheses rtrclreclem.rel φ Rel R
rtrclreclem.rex φ R V
Assertion rtrclreclem3 φ t*rec R t*rec R t*rec R

Proof

Step Hyp Ref Expression
1 rtrclreclem.rel φ Rel R
2 rtrclreclem.rex φ R V
3 df-co t*rec R t*rec R = e g | f e t*rec R f f t*rec R g
4 elopab d e g | f e t*rec R f f t*rec R g e g d = e g f e t*rec R f f t*rec R g
5 eqeq1 d = e g d = e g e g = e g
6 5 anbi1d d = e g d = e g f e t*rec R f f t*rec R g φ e g = e g f e t*rec R f f t*rec R g φ
7 simprr e g = e g f e t*rec R f f t*rec R g φ φ
8 simprl e g = e g f e t*rec R f f t*rec R g φ f e t*rec R f f t*rec R g
9 simpl e t*rec R f f t*rec R g φ e t*rec R f
10 simprr e t*rec R f f t*rec R g φ φ
11 1 2 dfrtrclrec2 φ e t*rec R f n 0 e R r n f
12 10 11 syl e t*rec R f f t*rec R g φ e t*rec R f n 0 e R r n f
13 9 12 mpbid e t*rec R f f t*rec R g φ n 0 e R r n f
14 simprl e t*rec R f f t*rec R g φ e R r n f n 0 f t*rec R g
15 simprrl e t*rec R f f t*rec R g φ e R r n f n 0 φ
16 1 2 dfrtrclrec2 φ f t*rec R g m 0 f R r m g
17 15 16 syl e t*rec R f f t*rec R g φ e R r n f n 0 f t*rec R g m 0 f R r m g
18 14 17 mpbid e t*rec R f f t*rec R g φ e R r n f n 0 m 0 f R r m g
19 simprrl φ e R r n f n 0 f R r m g m 0 n 0
20 19 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
21 20 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
22 simprr n 0 f R r m g m 0 m 0
23 22 adantl e R r n f n 0 f R r m g m 0 m 0
24 23 adantl φ e R r n f n 0 f R r m g m 0 m 0
25 24 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
26 25 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
27 21 26 nn0addcld e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n + m 0
28 21 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
29 28 nn0cnd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n
30 26 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
31 30 nn0cnd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m
32 29 31 addcomd n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n + m = m + n
33 eleq1 n + m = m + n n + m 0 m + n 0
34 33 anbi1d n + m = m + n n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0
35 26 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0
36 21 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 n 0
37 simprrl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 φ
38 37 adantl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 φ
39 38 1 syl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 Rel R
40 38 2 syl m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R V
41 39 40 relexpaddd m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 m 0 n 0 R r m R r n = R r m + n
42 35 36 41 mp2and m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r m + n
43 oveq2 n + m = m + n R r n + m = R r m + n
44 43 eqeq2d n + m = m + n R r m R r n = R r n + m R r m R r n = R r m + n
45 42 44 syl5ibr n + m = m + n m + n 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
46 34 45 sylbid n + m = m + n n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
47 32 46 mpcom n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R r m R r n = R r n + m
48 simprrl f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n f
49 48 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n f
50 simprrl e R r n f n 0 f R r m g m 0 f R r m g
51 50 adantl φ e R r n f n 0 f R r m g m 0 f R r m g
52 51 adantl f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
53 52 adantl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
54 53 adantl n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 f R r m g
55 vex f V
56 breq2 h = f e R r n h e R r n f
57 breq1 h = f h R r m g f R r m g
58 56 57 anbi12d h = f e R r n h h R r m g e R r n f f R r m g
59 55 58 spcev e R r n f f R r m g h e R r n h h R r m g
60 49 54 59 syl2an2 n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 h e R r n h h R r m g
61 vex e V
62 vex g V
63 61 62 brco e R r m R r n g h e R r n h h R r m g
64 60 63 sylibr n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r m R r n g
65 47 64 breqdi n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e R r n + m g
66 oveq2 i = n + m R r i = R r n + m
67 66 breqd i = n + m e R r i g e R r n + m g
68 67 rspcev n + m 0 e R r n + m g i 0 e R r i g
69 65 68 syldan n + m 0 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 i 0 e R r i g
70 27 69 mpancom e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 i 0 e R r i g
71 df-br e t*rec R g e g t*rec R
72 37 1 syl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 Rel R
73 37 2 syl e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 R V
74 72 73 dfrtrclrec2 e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R g i 0 e R r i g
75 71 74 bitr3id e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R i 0 e R r i g
76 70 75 mpbird e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
77 76 expcom f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
78 77 expcom φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
79 78 expcom e R r n f n 0 f R r m g m 0 φ f t*rec R g e t*rec R f e g t*rec R
80 79 anassrs e R r n f n 0 f R r m g m 0 φ f t*rec R g e t*rec R f e g t*rec R
81 80 impcom φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
82 81 anassrs φ e R r n f n 0 f R r m g m 0 f t*rec R g e t*rec R f e g t*rec R
83 82 impcom f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
84 83 anassrs f t*rec R g φ e R r n f n 0 f R r m g m 0 e t*rec R f e g t*rec R
85 84 impcom e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
86 85 anassrs e t*rec R f f t*rec R g φ e R r n f n 0 f R r m g m 0 e g t*rec R
87 86 expcom f R r m g m 0 e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
88 87 expcom m 0 f R r m g e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
89 88 rexlimiv m 0 f R r m g e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
90 18 89 mpcom e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
91 90 expcom f t*rec R g φ e R r n f n 0 e t*rec R f e g t*rec R
92 91 anassrs f t*rec R g φ e R r n f n 0 e t*rec R f e g t*rec R
93 92 impcom e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
94 93 anassrs e t*rec R f f t*rec R g φ e R r n f n 0 e g t*rec R
95 94 expcom e R r n f n 0 e t*rec R f f t*rec R g φ e g t*rec R
96 95 expcom n 0 e R r n f e t*rec R f f t*rec R g φ e g t*rec R
97 96 rexlimiv n 0 e R r n f e t*rec R f f t*rec R g φ e g t*rec R
98 13 97 mpcom e t*rec R f f t*rec R g φ e g t*rec R
99 98 anassrs e t*rec R f f t*rec R g φ e g t*rec R
100 99 expcom φ e t*rec R f f t*rec R g e g t*rec R
101 100 exlimdv φ f e t*rec R f f t*rec R g e g t*rec R
102 7 8 101 sylc e g = e g f e t*rec R f f t*rec R g φ e g t*rec R
103 eleq1 d = e g d t*rec R e g t*rec R
104 102 103 syl5ibr d = e g e g = e g f e t*rec R f f t*rec R g φ d t*rec R
105 6 104 sylbid d = e g d = e g f e t*rec R f f t*rec R g φ d t*rec R
106 105 anabsi5 d = e g f e t*rec R f f t*rec R g φ d t*rec R
107 106 anassrs d = e g f e t*rec R f f t*rec R g φ d t*rec R
108 107 expcom φ d = e g f e t*rec R f f t*rec R g d t*rec R
109 108 exlimdvv φ e g d = e g f e t*rec R f f t*rec R g d t*rec R
110 4 109 syl5bi φ d e g | f e t*rec R f f t*rec R g d t*rec R
111 eleq2 t*rec R t*rec R = e g | f e t*rec R f f t*rec R g d t*rec R t*rec R d e g | f e t*rec R f f t*rec R g
112 111 imbi1d t*rec R t*rec R = e g | f e t*rec R f f t*rec R g d t*rec R t*rec R d t*rec R d e g | f e t*rec R f f t*rec R g d t*rec R
113 110 112 syl5ibr t*rec R t*rec R = e g | f e t*rec R f f t*rec R g φ d t*rec R t*rec R d t*rec R
114 3 113 ax-mp φ d t*rec R t*rec R d t*rec R
115 114 ssrdv φ t*rec R t*rec R t*rec R