Metamath Proof Explorer


Theorem ruOLD

Description: Obsolete version of ru as of 20-Jun-2025. (Contributed by NM, 7-Aug-1994) Remove use of ax-13 . (Revised by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ruOLD x | x x V

Proof

Step Hyp Ref Expression
1 pm5.19 ¬ y y ¬ y y
2 eleq1w x = y x y y y
3 df-nel x x ¬ x x
4 id x = y x = y
5 4 4 eleq12d x = y x x y y
6 5 notbid x = y ¬ x x ¬ y y
7 3 6 bitrid x = y x x ¬ y y
8 2 7 bibi12d x = y x y x x y y ¬ y y
9 8 spvv x x y x x y y ¬ y y
10 1 9 mto ¬ x x y x x
11 eqabb y = x | x x x x y x x
12 10 11 mtbir ¬ y = x | x x
13 12 nex ¬ y y = x | x x
14 isset x | x x V y y = x | x x
15 13 14 mtbir ¬ x | x x V
16 15 nelir x | x x V