Metamath Proof Explorer


Theorem ruclem1

Description: Lemma for ruc (the reals are uncountable). Substitutions for the function D . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Fan Zheng, 6-Jun-2016)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruclem1.3 φ A
ruclem1.4 φ B
ruclem1.5 φ M
ruclem1.6 X = 1 st A B D M
ruclem1.7 Y = 2 nd A B D M
Assertion ruclem1 φ A B D M 2 X = if A + B 2 < M A A + B 2 + B 2 Y = if A + B 2 < M A + B 2 B

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruclem1.3 φ A
4 ruclem1.4 φ B
5 ruclem1.5 φ M
6 ruclem1.6 X = 1 st A B D M
7 ruclem1.7 Y = 2 nd A B D M
8 2 oveqd φ A B D M = A B x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x M
9 3 4 opelxpd φ A B 2
10 simpr x = A B y = M y = M
11 10 breq2d x = A B y = M m < y m < M
12 simpl x = A B y = M x = A B
13 12 fveq2d x = A B y = M 1 st x = 1 st A B
14 13 opeq1d x = A B y = M 1 st x m = 1 st A B m
15 12 fveq2d x = A B y = M 2 nd x = 2 nd A B
16 15 oveq2d x = A B y = M m + 2 nd x = m + 2 nd A B
17 16 oveq1d x = A B y = M m + 2 nd x 2 = m + 2 nd A B 2
18 17 15 opeq12d x = A B y = M m + 2 nd x 2 2 nd x = m + 2 nd A B 2 2 nd A B
19 11 14 18 ifbieq12d x = A B y = M if m < y 1 st x m m + 2 nd x 2 2 nd x = if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
20 19 csbeq2dv x = A B y = M 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x = 1 st x + 2 nd x 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
21 13 15 oveq12d x = A B y = M 1 st x + 2 nd x = 1 st A B + 2 nd A B
22 21 oveq1d x = A B y = M 1 st x + 2 nd x 2 = 1 st A B + 2 nd A B 2
23 22 csbeq1d x = A B y = M 1 st x + 2 nd x 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
24 20 23 eqtrd x = A B y = M 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x = 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
25 eqid x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
26 opex 1 st A B m V
27 opex m + 2 nd A B 2 2 nd A B V
28 26 27 ifex if m < M 1 st A B m m + 2 nd A B 2 2 nd A B V
29 28 csbex 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B V
30 24 25 29 ovmpoa A B 2 M A B x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x M = 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
31 9 5 30 syl2anc φ A B x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x M = 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
32 8 31 eqtrd φ A B D M = 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
33 op1stg A B 1 st A B = A
34 3 4 33 syl2anc φ 1 st A B = A
35 op2ndg A B 2 nd A B = B
36 3 4 35 syl2anc φ 2 nd A B = B
37 34 36 oveq12d φ 1 st A B + 2 nd A B = A + B
38 37 oveq1d φ 1 st A B + 2 nd A B 2 = A + B 2
39 38 csbeq1d φ 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = A + B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B
40 ovex A + B 2 V
41 breq1 m = A + B 2 m < M A + B 2 < M
42 opeq2 m = A + B 2 1 st A B m = 1 st A B A + B 2
43 oveq1 m = A + B 2 m + 2 nd A B = A + B 2 + 2 nd A B
44 43 oveq1d m = A + B 2 m + 2 nd A B 2 = A + B 2 + 2 nd A B 2
45 44 opeq1d m = A + B 2 m + 2 nd A B 2 2 nd A B = A + B 2 + 2 nd A B 2 2 nd A B
46 41 42 45 ifbieq12d m = A + B 2 if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = if A + B 2 < M 1 st A B A + B 2 A + B 2 + 2 nd A B 2 2 nd A B
47 40 46 csbie A + B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = if A + B 2 < M 1 st A B A + B 2 A + B 2 + 2 nd A B 2 2 nd A B
48 34 opeq1d φ 1 st A B A + B 2 = A A + B 2
49 36 oveq2d φ A + B 2 + 2 nd A B = A + B 2 + B
50 49 oveq1d φ A + B 2 + 2 nd A B 2 = A + B 2 + B 2
51 50 36 opeq12d φ A + B 2 + 2 nd A B 2 2 nd A B = A + B 2 + B 2 B
52 48 51 ifeq12d φ if A + B 2 < M 1 st A B A + B 2 A + B 2 + 2 nd A B 2 2 nd A B = if A + B 2 < M A A + B 2 A + B 2 + B 2 B
53 47 52 eqtrid φ A + B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = if A + B 2 < M A A + B 2 A + B 2 + B 2 B
54 39 53 eqtrd φ 1 st A B + 2 nd A B 2 / m if m < M 1 st A B m m + 2 nd A B 2 2 nd A B = if A + B 2 < M A A + B 2 A + B 2 + B 2 B
55 32 54 eqtrd φ A B D M = if A + B 2 < M A A + B 2 A + B 2 + B 2 B
56 3 4 readdcld φ A + B
57 56 rehalfcld φ A + B 2
58 3 57 opelxpd φ A A + B 2 2
59 57 4 readdcld φ A + B 2 + B
60 59 rehalfcld φ A + B 2 + B 2
61 60 4 opelxpd φ A + B 2 + B 2 B 2
62 58 61 ifcld φ if A + B 2 < M A A + B 2 A + B 2 + B 2 B 2
63 55 62 eqeltrd φ A B D M 2
64 55 fveq2d φ 1 st A B D M = 1 st if A + B 2 < M A A + B 2 A + B 2 + B 2 B
65 fvif 1 st if A + B 2 < M A A + B 2 A + B 2 + B 2 B = if A + B 2 < M 1 st A A + B 2 1 st A + B 2 + B 2 B
66 op1stg A A + B 2 V 1 st A A + B 2 = A
67 3 40 66 sylancl φ 1 st A A + B 2 = A
68 ovex A + B 2 + B 2 V
69 op1stg A + B 2 + B 2 V B 1 st A + B 2 + B 2 B = A + B 2 + B 2
70 68 4 69 sylancr φ 1 st A + B 2 + B 2 B = A + B 2 + B 2
71 67 70 ifeq12d φ if A + B 2 < M 1 st A A + B 2 1 st A + B 2 + B 2 B = if A + B 2 < M A A + B 2 + B 2
72 65 71 eqtrid φ 1 st if A + B 2 < M A A + B 2 A + B 2 + B 2 B = if A + B 2 < M A A + B 2 + B 2
73 64 72 eqtrd φ 1 st A B D M = if A + B 2 < M A A + B 2 + B 2
74 6 73 eqtrid φ X = if A + B 2 < M A A + B 2 + B 2
75 55 fveq2d φ 2 nd A B D M = 2 nd if A + B 2 < M A A + B 2 A + B 2 + B 2 B
76 fvif 2 nd if A + B 2 < M A A + B 2 A + B 2 + B 2 B = if A + B 2 < M 2 nd A A + B 2 2 nd A + B 2 + B 2 B
77 op2ndg A A + B 2 V 2 nd A A + B 2 = A + B 2
78 3 40 77 sylancl φ 2 nd A A + B 2 = A + B 2
79 op2ndg A + B 2 + B 2 V B 2 nd A + B 2 + B 2 B = B
80 68 4 79 sylancr φ 2 nd A + B 2 + B 2 B = B
81 78 80 ifeq12d φ if A + B 2 < M 2 nd A A + B 2 2 nd A + B 2 + B 2 B = if A + B 2 < M A + B 2 B
82 76 81 eqtrid φ 2 nd if A + B 2 < M A A + B 2 A + B 2 + B 2 B = if A + B 2 < M A + B 2 B
83 75 82 eqtrd φ 2 nd A B D M = if A + B 2 < M A + B 2 B
84 7 83 eqtrid φ Y = if A + B 2 < M A + B 2 B
85 63 74 84 3jca φ A B D M 2 X = if A + B 2 < M A A + B 2 + B 2 Y = if A + B 2 < M A + B 2 B