Metamath Proof Explorer


Theorem ruclem10

Description: Lemma for ruc . Every first component of the G sequence is less than every second component. That is, the sequences form a chain a_1 < a_2 < ... < b_2 < b_1, where a_i are the first components and b_i are the second components. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruc.4 C=001F
ruc.5 G=seq0DC
ruclem10.6 φM0
ruclem10.7 φN0
Assertion ruclem10 φ1stGM<2ndGN

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruc.4 C=001F
4 ruc.5 G=seq0DC
5 ruclem10.6 φM0
6 ruclem10.7 φN0
7 1 2 3 4 ruclem6 φG:02
8 7 5 ffvelcdmd φGM2
9 xp1st GM21stGM
10 8 9 syl φ1stGM
11 6 5 ifcld φifMNNM0
12 7 11 ffvelcdmd φGifMNNM2
13 xp1st GifMNNM21stGifMNNM
14 12 13 syl φ1stGifMNNM
15 7 6 ffvelcdmd φGN2
16 xp2nd GN22ndGN
17 15 16 syl φ2ndGN
18 5 nn0red φM
19 6 nn0red φN
20 max1 MNMifMNNM
21 18 19 20 syl2anc φMifMNNM
22 5 nn0zd φM
23 11 nn0zd φifMNNM
24 eluz MifMNNMifMNNMMMifMNNM
25 22 23 24 syl2anc φifMNNMMMifMNNM
26 21 25 mpbird φifMNNMM
27 1 2 3 4 5 26 ruclem9 φ1stGM1stGifMNNM2ndGifMNNM2ndGM
28 27 simpld φ1stGM1stGifMNNM
29 xp2nd GifMNNM22ndGifMNNM
30 12 29 syl φ2ndGifMNNM
31 1 2 3 4 ruclem8 φifMNNM01stGifMNNM<2ndGifMNNM
32 11 31 mpdan φ1stGifMNNM<2ndGifMNNM
33 max2 MNNifMNNM
34 18 19 33 syl2anc φNifMNNM
35 6 nn0zd φN
36 eluz NifMNNMifMNNMNNifMNNM
37 35 23 36 syl2anc φifMNNMNNifMNNM
38 34 37 mpbird φifMNNMN
39 1 2 3 4 6 38 ruclem9 φ1stGN1stGifMNNM2ndGifMNNM2ndGN
40 39 simprd φ2ndGifMNNM2ndGN
41 14 30 17 32 40 ltletrd φ1stGifMNNM<2ndGN
42 10 14 17 28 41 lelttrd φ1stGM<2ndGN