Metamath Proof Explorer


Theorem ruclem10

Description: Lemma for ruc . Every first component of the G sequence is less than every second component. That is, the sequences form a chain a_1 < a_2 < ... < b_2 < b_1, where a_i are the first components and b_i are the second components. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
ruclem10.6 φ M 0
ruclem10.7 φ N 0
Assertion ruclem10 φ 1 st G M < 2 nd G N

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 ruclem10.6 φ M 0
6 ruclem10.7 φ N 0
7 1 2 3 4 ruclem6 φ G : 0 2
8 7 5 ffvelrnd φ G M 2
9 xp1st G M 2 1 st G M
10 8 9 syl φ 1 st G M
11 6 5 ifcld φ if M N N M 0
12 7 11 ffvelrnd φ G if M N N M 2
13 xp1st G if M N N M 2 1 st G if M N N M
14 12 13 syl φ 1 st G if M N N M
15 7 6 ffvelrnd φ G N 2
16 xp2nd G N 2 2 nd G N
17 15 16 syl φ 2 nd G N
18 5 nn0red φ M
19 6 nn0red φ N
20 max1 M N M if M N N M
21 18 19 20 syl2anc φ M if M N N M
22 5 nn0zd φ M
23 11 nn0zd φ if M N N M
24 eluz M if M N N M if M N N M M M if M N N M
25 22 23 24 syl2anc φ if M N N M M M if M N N M
26 21 25 mpbird φ if M N N M M
27 1 2 3 4 5 26 ruclem9 φ 1 st G M 1 st G if M N N M 2 nd G if M N N M 2 nd G M
28 27 simpld φ 1 st G M 1 st G if M N N M
29 xp2nd G if M N N M 2 2 nd G if M N N M
30 12 29 syl φ 2 nd G if M N N M
31 1 2 3 4 ruclem8 φ if M N N M 0 1 st G if M N N M < 2 nd G if M N N M
32 11 31 mpdan φ 1 st G if M N N M < 2 nd G if M N N M
33 max2 M N N if M N N M
34 18 19 33 syl2anc φ N if M N N M
35 6 nn0zd φ N
36 eluz N if M N N M if M N N M N N if M N N M
37 35 23 36 syl2anc φ if M N N M N N if M N N M
38 34 37 mpbird φ if M N N M N
39 1 2 3 4 6 38 ruclem9 φ 1 st G N 1 st G if M N N M 2 nd G if M N N M 2 nd G N
40 39 simprd φ 2 nd G if M N N M 2 nd G N
41 14 30 17 32 40 ltletrd φ 1 st G if M N N M < 2 nd G N
42 10 14 17 28 41 lelttrd φ 1 st G M < 2 nd G N