Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|
2 |
|
ruc.2 |
|
3 |
|
ruc.4 |
|
4 |
|
ruc.5 |
|
5 |
4
|
fveq1i |
|
6 |
|
0z |
|
7 |
|
seq1 |
|
8 |
6 7
|
ax-mp |
|
9 |
5 8
|
eqtri |
|
10 |
1 2 3 4
|
ruclem4 |
|
11 |
9 10
|
eqtr3id |
|
12 |
|
0re |
|
13 |
|
1re |
|
14 |
|
opelxpi |
|
15 |
12 13 14
|
mp2an |
|
16 |
11 15
|
eqeltrdi |
|
17 |
|
1st2nd2 |
|
18 |
17
|
ad2antrl |
|
19 |
18
|
oveq1d |
|
20 |
1
|
adantr |
|
21 |
2
|
adantr |
|
22 |
|
xp1st |
|
23 |
22
|
ad2antrl |
|
24 |
|
xp2nd |
|
25 |
24
|
ad2antrl |
|
26 |
|
simprr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
20 21 23 25 26 27 28
|
ruclem1 |
|
30 |
29
|
simp1d |
|
31 |
19 30
|
eqeltrd |
|
32 |
|
nn0uz |
|
33 |
|
0zd |
|
34 |
|
0p1e1 |
|
35 |
34
|
fveq2i |
|
36 |
|
nnuz |
|
37 |
35 36
|
eqtr4i |
|
38 |
37
|
eleq2i |
|
39 |
3
|
equncomi |
|
40 |
39
|
fveq1i |
|
41 |
|
nnne0 |
|
42 |
41
|
necomd |
|
43 |
|
fvunsn |
|
44 |
42 43
|
syl |
|
45 |
40 44
|
eqtrid |
|
46 |
45
|
adantl |
|
47 |
1
|
ffvelrnda |
|
48 |
46 47
|
eqeltrd |
|
49 |
38 48
|
sylan2b |
|
50 |
16 31 32 33 49
|
seqf2 |
|
51 |
4
|
feq1i |
|
52 |
50 51
|
sylibr |
|