Metamath Proof Explorer


Theorem ruclem6

Description: Lemma for ruc . Domain and range of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
Assertion ruclem6 φ G : 0 2

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 4 fveq1i G 0 = seq 0 D C 0
6 0z 0
7 seq1 0 seq 0 D C 0 = C 0
8 6 7 ax-mp seq 0 D C 0 = C 0
9 5 8 eqtri G 0 = C 0
10 1 2 3 4 ruclem4 φ G 0 = 0 1
11 9 10 eqtr3id φ C 0 = 0 1
12 0re 0
13 1re 1
14 opelxpi 0 1 0 1 2
15 12 13 14 mp2an 0 1 2
16 11 15 eqeltrdi φ C 0 2
17 1st2nd2 z 2 z = 1 st z 2 nd z
18 17 ad2antrl φ z 2 w z = 1 st z 2 nd z
19 18 oveq1d φ z 2 w z D w = 1 st z 2 nd z D w
20 1 adantr φ z 2 w F :
21 2 adantr φ z 2 w D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
22 xp1st z 2 1 st z
23 22 ad2antrl φ z 2 w 1 st z
24 xp2nd z 2 2 nd z
25 24 ad2antrl φ z 2 w 2 nd z
26 simprr φ z 2 w w
27 eqid 1 st 1 st z 2 nd z D w = 1 st 1 st z 2 nd z D w
28 eqid 2 nd 1 st z 2 nd z D w = 2 nd 1 st z 2 nd z D w
29 20 21 23 25 26 27 28 ruclem1 φ z 2 w 1 st z 2 nd z D w 2 1 st 1 st z 2 nd z D w = if 1 st z + 2 nd z 2 < w 1 st z 1 st z + 2 nd z 2 + 2 nd z 2 2 nd 1 st z 2 nd z D w = if 1 st z + 2 nd z 2 < w 1 st z + 2 nd z 2 2 nd z
30 29 simp1d φ z 2 w 1 st z 2 nd z D w 2
31 19 30 eqeltrd φ z 2 w z D w 2
32 nn0uz 0 = 0
33 0zd φ 0
34 0p1e1 0 + 1 = 1
35 34 fveq2i 0 + 1 = 1
36 nnuz = 1
37 35 36 eqtr4i 0 + 1 =
38 37 eleq2i z 0 + 1 z
39 3 equncomi C = F 0 0 1
40 39 fveq1i C z = F 0 0 1 z
41 nnne0 z z 0
42 41 necomd z 0 z
43 fvunsn 0 z F 0 0 1 z = F z
44 42 43 syl z F 0 0 1 z = F z
45 40 44 syl5eq z C z = F z
46 45 adantl φ z C z = F z
47 1 ffvelrnda φ z F z
48 46 47 eqeltrd φ z C z
49 38 48 sylan2b φ z 0 + 1 C z
50 16 31 32 33 49 seqf2 φ seq 0 D C : 0 2
51 4 feq1i G : 0 2 seq 0 D C : 0 2
52 50 51 sylibr φ G : 0 2