Metamath Proof Explorer


Theorem ruclem7

Description: Lemma for ruc . Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
Assertion ruclem7 φ N 0 G N + 1 = G N D F N + 1

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 simpr φ N 0 N 0
6 nn0uz 0 = 0
7 5 6 eleqtrdi φ N 0 N 0
8 seqp1 N 0 seq 0 D C N + 1 = seq 0 D C N D C N + 1
9 7 8 syl φ N 0 seq 0 D C N + 1 = seq 0 D C N D C N + 1
10 4 fveq1i G N + 1 = seq 0 D C N + 1
11 4 fveq1i G N = seq 0 D C N
12 11 oveq1i G N D C N + 1 = seq 0 D C N D C N + 1
13 9 10 12 3eqtr4g φ N 0 G N + 1 = G N D C N + 1
14 nn0p1nn N 0 N + 1
15 14 adantl φ N 0 N + 1
16 15 nnne0d φ N 0 N + 1 0
17 16 necomd φ N 0 0 N + 1
18 3 equncomi C = F 0 0 1
19 18 fveq1i C N + 1 = F 0 0 1 N + 1
20 fvunsn 0 N + 1 F 0 0 1 N + 1 = F N + 1
21 19 20 eqtrid 0 N + 1 C N + 1 = F N + 1
22 17 21 syl φ N 0 C N + 1 = F N + 1
23 22 oveq2d φ N 0 G N D C N + 1 = G N D F N + 1
24 13 23 eqtrd φ N 0 G N + 1 = G N D F N + 1