Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|
2 |
|
ruc.2 |
|
3 |
|
ruc.4 |
|
4 |
|
ruc.5 |
|
5 |
|
2fveq3 |
|
6 |
|
2fveq3 |
|
7 |
5 6
|
breq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
2fveq3 |
|
10 |
|
2fveq3 |
|
11 |
9 10
|
breq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
2fveq3 |
|
14 |
|
2fveq3 |
|
15 |
13 14
|
breq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
2fveq3 |
|
18 |
|
2fveq3 |
|
19 |
17 18
|
breq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
0lt1 |
|
22 |
21
|
a1i |
|
23 |
1 2 3 4
|
ruclem4 |
|
24 |
23
|
fveq2d |
|
25 |
|
c0ex |
|
26 |
|
1ex |
|
27 |
25 26
|
op1st |
|
28 |
24 27
|
eqtrdi |
|
29 |
23
|
fveq2d |
|
30 |
25 26
|
op2nd |
|
31 |
29 30
|
eqtrdi |
|
32 |
22 28 31
|
3brtr4d |
|
33 |
1
|
adantr |
|
34 |
2
|
adantr |
|
35 |
1 2 3 4
|
ruclem6 |
|
36 |
35
|
ffvelrnda |
|
37 |
36
|
adantrr |
|
38 |
|
xp1st |
|
39 |
37 38
|
syl |
|
40 |
|
xp2nd |
|
41 |
37 40
|
syl |
|
42 |
|
nn0p1nn |
|
43 |
|
ffvelrn |
|
44 |
1 42 43
|
syl2an |
|
45 |
44
|
adantrr |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
simprr |
|
49 |
33 34 39 41 45 46 47 48
|
ruclem2 |
|
50 |
49
|
simp2d |
|
51 |
1 2 3 4
|
ruclem7 |
|
52 |
51
|
adantrr |
|
53 |
|
1st2nd2 |
|
54 |
37 53
|
syl |
|
55 |
54
|
oveq1d |
|
56 |
52 55
|
eqtrd |
|
57 |
56
|
fveq2d |
|
58 |
56
|
fveq2d |
|
59 |
50 57 58
|
3brtr4d |
|
60 |
59
|
expr |
|
61 |
60
|
expcom |
|
62 |
61
|
a2d |
|
63 |
8 12 16 20 32 62
|
nn0ind |
|
64 |
63
|
impcom |
|