Metamath Proof Explorer


Theorem ruclem8

Description: Lemma for ruc . The intervals of the G sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
Assertion ruclem8 φ N 0 1 st G N < 2 nd G N

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 2fveq3 k = 0 1 st G k = 1 st G 0
6 2fveq3 k = 0 2 nd G k = 2 nd G 0
7 5 6 breq12d k = 0 1 st G k < 2 nd G k 1 st G 0 < 2 nd G 0
8 7 imbi2d k = 0 φ 1 st G k < 2 nd G k φ 1 st G 0 < 2 nd G 0
9 2fveq3 k = n 1 st G k = 1 st G n
10 2fveq3 k = n 2 nd G k = 2 nd G n
11 9 10 breq12d k = n 1 st G k < 2 nd G k 1 st G n < 2 nd G n
12 11 imbi2d k = n φ 1 st G k < 2 nd G k φ 1 st G n < 2 nd G n
13 2fveq3 k = n + 1 1 st G k = 1 st G n + 1
14 2fveq3 k = n + 1 2 nd G k = 2 nd G n + 1
15 13 14 breq12d k = n + 1 1 st G k < 2 nd G k 1 st G n + 1 < 2 nd G n + 1
16 15 imbi2d k = n + 1 φ 1 st G k < 2 nd G k φ 1 st G n + 1 < 2 nd G n + 1
17 2fveq3 k = N 1 st G k = 1 st G N
18 2fveq3 k = N 2 nd G k = 2 nd G N
19 17 18 breq12d k = N 1 st G k < 2 nd G k 1 st G N < 2 nd G N
20 19 imbi2d k = N φ 1 st G k < 2 nd G k φ 1 st G N < 2 nd G N
21 0lt1 0 < 1
22 21 a1i φ 0 < 1
23 1 2 3 4 ruclem4 φ G 0 = 0 1
24 23 fveq2d φ 1 st G 0 = 1 st 0 1
25 c0ex 0 V
26 1ex 1 V
27 25 26 op1st 1 st 0 1 = 0
28 24 27 eqtrdi φ 1 st G 0 = 0
29 23 fveq2d φ 2 nd G 0 = 2 nd 0 1
30 25 26 op2nd 2 nd 0 1 = 1
31 29 30 eqtrdi φ 2 nd G 0 = 1
32 22 28 31 3brtr4d φ 1 st G 0 < 2 nd G 0
33 1 adantr φ n 0 1 st G n < 2 nd G n F :
34 2 adantr φ n 0 1 st G n < 2 nd G n D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
35 1 2 3 4 ruclem6 φ G : 0 2
36 35 ffvelrnda φ n 0 G n 2
37 36 adantrr φ n 0 1 st G n < 2 nd G n G n 2
38 xp1st G n 2 1 st G n
39 37 38 syl φ n 0 1 st G n < 2 nd G n 1 st G n
40 xp2nd G n 2 2 nd G n
41 37 40 syl φ n 0 1 st G n < 2 nd G n 2 nd G n
42 nn0p1nn n 0 n + 1
43 ffvelrn F : n + 1 F n + 1
44 1 42 43 syl2an φ n 0 F n + 1
45 44 adantrr φ n 0 1 st G n < 2 nd G n F n + 1
46 eqid 1 st 1 st G n 2 nd G n D F n + 1 = 1 st 1 st G n 2 nd G n D F n + 1
47 eqid 2 nd 1 st G n 2 nd G n D F n + 1 = 2 nd 1 st G n 2 nd G n D F n + 1
48 simprr φ n 0 1 st G n < 2 nd G n 1 st G n < 2 nd G n
49 33 34 39 41 45 46 47 48 ruclem2 φ n 0 1 st G n < 2 nd G n 1 st G n 1 st 1 st G n 2 nd G n D F n + 1 1 st 1 st G n 2 nd G n D F n + 1 < 2 nd 1 st G n 2 nd G n D F n + 1 2 nd 1 st G n 2 nd G n D F n + 1 2 nd G n
50 49 simp2d φ n 0 1 st G n < 2 nd G n 1 st 1 st G n 2 nd G n D F n + 1 < 2 nd 1 st G n 2 nd G n D F n + 1
51 1 2 3 4 ruclem7 φ n 0 G n + 1 = G n D F n + 1
52 51 adantrr φ n 0 1 st G n < 2 nd G n G n + 1 = G n D F n + 1
53 1st2nd2 G n 2 G n = 1 st G n 2 nd G n
54 37 53 syl φ n 0 1 st G n < 2 nd G n G n = 1 st G n 2 nd G n
55 54 oveq1d φ n 0 1 st G n < 2 nd G n G n D F n + 1 = 1 st G n 2 nd G n D F n + 1
56 52 55 eqtrd φ n 0 1 st G n < 2 nd G n G n + 1 = 1 st G n 2 nd G n D F n + 1
57 56 fveq2d φ n 0 1 st G n < 2 nd G n 1 st G n + 1 = 1 st 1 st G n 2 nd G n D F n + 1
58 56 fveq2d φ n 0 1 st G n < 2 nd G n 2 nd G n + 1 = 2 nd 1 st G n 2 nd G n D F n + 1
59 50 57 58 3brtr4d φ n 0 1 st G n < 2 nd G n 1 st G n + 1 < 2 nd G n + 1
60 59 expr φ n 0 1 st G n < 2 nd G n 1 st G n + 1 < 2 nd G n + 1
61 60 expcom n 0 φ 1 st G n < 2 nd G n 1 st G n + 1 < 2 nd G n + 1
62 61 a2d n 0 φ 1 st G n < 2 nd G n φ 1 st G n + 1 < 2 nd G n + 1
63 8 12 16 20 32 62 nn0ind N 0 φ 1 st G N < 2 nd G N
64 63 impcom φ N 0 1 st G N < 2 nd G N