| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|
| 2 |
|
ruc.2 |
|
| 3 |
|
ruc.4 |
|
| 4 |
|
ruc.5 |
|
| 5 |
|
2fveq3 |
|
| 6 |
|
2fveq3 |
|
| 7 |
5 6
|
breq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
2fveq3 |
|
| 10 |
|
2fveq3 |
|
| 11 |
9 10
|
breq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
2fveq3 |
|
| 14 |
|
2fveq3 |
|
| 15 |
13 14
|
breq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
2fveq3 |
|
| 18 |
|
2fveq3 |
|
| 19 |
17 18
|
breq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
0lt1 |
|
| 22 |
21
|
a1i |
|
| 23 |
1 2 3 4
|
ruclem4 |
|
| 24 |
23
|
fveq2d |
|
| 25 |
|
c0ex |
|
| 26 |
|
1ex |
|
| 27 |
25 26
|
op1st |
|
| 28 |
24 27
|
eqtrdi |
|
| 29 |
23
|
fveq2d |
|
| 30 |
25 26
|
op2nd |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
22 28 31
|
3brtr4d |
|
| 33 |
1
|
adantr |
|
| 34 |
2
|
adantr |
|
| 35 |
1 2 3 4
|
ruclem6 |
|
| 36 |
35
|
ffvelcdmda |
|
| 37 |
36
|
adantrr |
|
| 38 |
|
xp1st |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
xp2nd |
|
| 41 |
37 40
|
syl |
|
| 42 |
|
nn0p1nn |
|
| 43 |
|
ffvelcdm |
|
| 44 |
1 42 43
|
syl2an |
|
| 45 |
44
|
adantrr |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
simprr |
|
| 49 |
33 34 39 41 45 46 47 48
|
ruclem2 |
|
| 50 |
49
|
simp2d |
|
| 51 |
1 2 3 4
|
ruclem7 |
|
| 52 |
51
|
adantrr |
|
| 53 |
|
1st2nd2 |
|
| 54 |
37 53
|
syl |
|
| 55 |
54
|
oveq1d |
|
| 56 |
52 55
|
eqtrd |
|
| 57 |
56
|
fveq2d |
|
| 58 |
56
|
fveq2d |
|
| 59 |
50 57 58
|
3brtr4d |
|
| 60 |
59
|
expr |
|
| 61 |
60
|
expcom |
|
| 62 |
61
|
a2d |
|
| 63 |
8 12 16 20 32 62
|
nn0ind |
|
| 64 |
63
|
impcom |
|