Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|
2 |
|
ruc.2 |
|
3 |
|
ruc.4 |
|
4 |
|
ruc.5 |
|
5 |
|
ruclem9.6 |
|
6 |
|
ruclem9.7 |
|
7 |
|
2fveq3 |
|
8 |
7
|
breq2d |
|
9 |
|
2fveq3 |
|
10 |
9
|
breq1d |
|
11 |
8 10
|
anbi12d |
|
12 |
11
|
imbi2d |
|
13 |
|
2fveq3 |
|
14 |
13
|
breq2d |
|
15 |
|
2fveq3 |
|
16 |
15
|
breq1d |
|
17 |
14 16
|
anbi12d |
|
18 |
17
|
imbi2d |
|
19 |
|
2fveq3 |
|
20 |
19
|
breq2d |
|
21 |
|
2fveq3 |
|
22 |
21
|
breq1d |
|
23 |
20 22
|
anbi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
2fveq3 |
|
26 |
25
|
breq2d |
|
27 |
|
2fveq3 |
|
28 |
27
|
breq1d |
|
29 |
26 28
|
anbi12d |
|
30 |
29
|
imbi2d |
|
31 |
1 2 3 4
|
ruclem6 |
|
32 |
31 5
|
ffvelrnd |
|
33 |
|
xp1st |
|
34 |
32 33
|
syl |
|
35 |
34
|
leidd |
|
36 |
|
xp2nd |
|
37 |
32 36
|
syl |
|
38 |
37
|
leidd |
|
39 |
35 38
|
jca |
|
40 |
1
|
adantr |
|
41 |
2
|
adantr |
|
42 |
31
|
adantr |
|
43 |
|
eluznn0 |
|
44 |
5 43
|
sylan |
|
45 |
42 44
|
ffvelrnd |
|
46 |
|
xp1st |
|
47 |
45 46
|
syl |
|
48 |
|
xp2nd |
|
49 |
45 48
|
syl |
|
50 |
|
nn0p1nn |
|
51 |
44 50
|
syl |
|
52 |
40 51
|
ffvelrnd |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
1 2 3 4
|
ruclem8 |
|
56 |
44 55
|
syldan |
|
57 |
40 41 47 49 52 53 54 56
|
ruclem2 |
|
58 |
57
|
simp1d |
|
59 |
1 2 3 4
|
ruclem7 |
|
60 |
44 59
|
syldan |
|
61 |
|
1st2nd2 |
|
62 |
45 61
|
syl |
|
63 |
62
|
oveq1d |
|
64 |
60 63
|
eqtrd |
|
65 |
64
|
fveq2d |
|
66 |
58 65
|
breqtrrd |
|
67 |
34
|
adantr |
|
68 |
|
peano2nn0 |
|
69 |
44 68
|
syl |
|
70 |
42 69
|
ffvelrnd |
|
71 |
|
xp1st |
|
72 |
70 71
|
syl |
|
73 |
|
letr |
|
74 |
67 47 72 73
|
syl3anc |
|
75 |
66 74
|
mpan2d |
|
76 |
64
|
fveq2d |
|
77 |
57
|
simp3d |
|
78 |
76 77
|
eqbrtrd |
|
79 |
|
xp2nd |
|
80 |
70 79
|
syl |
|
81 |
37
|
adantr |
|
82 |
|
letr |
|
83 |
80 49 81 82
|
syl3anc |
|
84 |
78 83
|
mpand |
|
85 |
75 84
|
anim12d |
|
86 |
85
|
expcom |
|
87 |
86
|
a2d |
|
88 |
12 18 24 30 39 87
|
uzind4i |
|
89 |
6 88
|
mpcom |
|