Metamath Proof Explorer


Theorem ruclem9

Description: Lemma for ruc . The first components of the G sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
ruclem9.6 φ M 0
ruclem9.7 φ N M
Assertion ruclem9 φ 1 st G M 1 st G N 2 nd G N 2 nd G M

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 ruclem9.6 φ M 0
6 ruclem9.7 φ N M
7 2fveq3 k = M 1 st G k = 1 st G M
8 7 breq2d k = M 1 st G M 1 st G k 1 st G M 1 st G M
9 2fveq3 k = M 2 nd G k = 2 nd G M
10 9 breq1d k = M 2 nd G k 2 nd G M 2 nd G M 2 nd G M
11 8 10 anbi12d k = M 1 st G M 1 st G k 2 nd G k 2 nd G M 1 st G M 1 st G M 2 nd G M 2 nd G M
12 11 imbi2d k = M φ 1 st G M 1 st G k 2 nd G k 2 nd G M φ 1 st G M 1 st G M 2 nd G M 2 nd G M
13 2fveq3 k = n 1 st G k = 1 st G n
14 13 breq2d k = n 1 st G M 1 st G k 1 st G M 1 st G n
15 2fveq3 k = n 2 nd G k = 2 nd G n
16 15 breq1d k = n 2 nd G k 2 nd G M 2 nd G n 2 nd G M
17 14 16 anbi12d k = n 1 st G M 1 st G k 2 nd G k 2 nd G M 1 st G M 1 st G n 2 nd G n 2 nd G M
18 17 imbi2d k = n φ 1 st G M 1 st G k 2 nd G k 2 nd G M φ 1 st G M 1 st G n 2 nd G n 2 nd G M
19 2fveq3 k = n + 1 1 st G k = 1 st G n + 1
20 19 breq2d k = n + 1 1 st G M 1 st G k 1 st G M 1 st G n + 1
21 2fveq3 k = n + 1 2 nd G k = 2 nd G n + 1
22 21 breq1d k = n + 1 2 nd G k 2 nd G M 2 nd G n + 1 2 nd G M
23 20 22 anbi12d k = n + 1 1 st G M 1 st G k 2 nd G k 2 nd G M 1 st G M 1 st G n + 1 2 nd G n + 1 2 nd G M
24 23 imbi2d k = n + 1 φ 1 st G M 1 st G k 2 nd G k 2 nd G M φ 1 st G M 1 st G n + 1 2 nd G n + 1 2 nd G M
25 2fveq3 k = N 1 st G k = 1 st G N
26 25 breq2d k = N 1 st G M 1 st G k 1 st G M 1 st G N
27 2fveq3 k = N 2 nd G k = 2 nd G N
28 27 breq1d k = N 2 nd G k 2 nd G M 2 nd G N 2 nd G M
29 26 28 anbi12d k = N 1 st G M 1 st G k 2 nd G k 2 nd G M 1 st G M 1 st G N 2 nd G N 2 nd G M
30 29 imbi2d k = N φ 1 st G M 1 st G k 2 nd G k 2 nd G M φ 1 st G M 1 st G N 2 nd G N 2 nd G M
31 1 2 3 4 ruclem6 φ G : 0 2
32 31 5 ffvelrnd φ G M 2
33 xp1st G M 2 1 st G M
34 32 33 syl φ 1 st G M
35 34 leidd φ 1 st G M 1 st G M
36 xp2nd G M 2 2 nd G M
37 32 36 syl φ 2 nd G M
38 37 leidd φ 2 nd G M 2 nd G M
39 35 38 jca φ 1 st G M 1 st G M 2 nd G M 2 nd G M
40 1 adantr φ n M F :
41 2 adantr φ n M D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
42 31 adantr φ n M G : 0 2
43 eluznn0 M 0 n M n 0
44 5 43 sylan φ n M n 0
45 42 44 ffvelrnd φ n M G n 2
46 xp1st G n 2 1 st G n
47 45 46 syl φ n M 1 st G n
48 xp2nd G n 2 2 nd G n
49 45 48 syl φ n M 2 nd G n
50 nn0p1nn n 0 n + 1
51 44 50 syl φ n M n + 1
52 40 51 ffvelrnd φ n M F n + 1
53 eqid 1 st 1 st G n 2 nd G n D F n + 1 = 1 st 1 st G n 2 nd G n D F n + 1
54 eqid 2 nd 1 st G n 2 nd G n D F n + 1 = 2 nd 1 st G n 2 nd G n D F n + 1
55 1 2 3 4 ruclem8 φ n 0 1 st G n < 2 nd G n
56 44 55 syldan φ n M 1 st G n < 2 nd G n
57 40 41 47 49 52 53 54 56 ruclem2 φ n M 1 st G n 1 st 1 st G n 2 nd G n D F n + 1 1 st 1 st G n 2 nd G n D F n + 1 < 2 nd 1 st G n 2 nd G n D F n + 1 2 nd 1 st G n 2 nd G n D F n + 1 2 nd G n
58 57 simp1d φ n M 1 st G n 1 st 1 st G n 2 nd G n D F n + 1
59 1 2 3 4 ruclem7 φ n 0 G n + 1 = G n D F n + 1
60 44 59 syldan φ n M G n + 1 = G n D F n + 1
61 1st2nd2 G n 2 G n = 1 st G n 2 nd G n
62 45 61 syl φ n M G n = 1 st G n 2 nd G n
63 62 oveq1d φ n M G n D F n + 1 = 1 st G n 2 nd G n D F n + 1
64 60 63 eqtrd φ n M G n + 1 = 1 st G n 2 nd G n D F n + 1
65 64 fveq2d φ n M 1 st G n + 1 = 1 st 1 st G n 2 nd G n D F n + 1
66 58 65 breqtrrd φ n M 1 st G n 1 st G n + 1
67 34 adantr φ n M 1 st G M
68 peano2nn0 n 0 n + 1 0
69 44 68 syl φ n M n + 1 0
70 42 69 ffvelrnd φ n M G n + 1 2
71 xp1st G n + 1 2 1 st G n + 1
72 70 71 syl φ n M 1 st G n + 1
73 letr 1 st G M 1 st G n 1 st G n + 1 1 st G M 1 st G n 1 st G n 1 st G n + 1 1 st G M 1 st G n + 1
74 67 47 72 73 syl3anc φ n M 1 st G M 1 st G n 1 st G n 1 st G n + 1 1 st G M 1 st G n + 1
75 66 74 mpan2d φ n M 1 st G M 1 st G n 1 st G M 1 st G n + 1
76 64 fveq2d φ n M 2 nd G n + 1 = 2 nd 1 st G n 2 nd G n D F n + 1
77 57 simp3d φ n M 2 nd 1 st G n 2 nd G n D F n + 1 2 nd G n
78 76 77 eqbrtrd φ n M 2 nd G n + 1 2 nd G n
79 xp2nd G n + 1 2 2 nd G n + 1
80 70 79 syl φ n M 2 nd G n + 1
81 37 adantr φ n M 2 nd G M
82 letr 2 nd G n + 1 2 nd G n 2 nd G M 2 nd G n + 1 2 nd G n 2 nd G n 2 nd G M 2 nd G n + 1 2 nd G M
83 80 49 81 82 syl3anc φ n M 2 nd G n + 1 2 nd G n 2 nd G n 2 nd G M 2 nd G n + 1 2 nd G M
84 78 83 mpand φ n M 2 nd G n 2 nd G M 2 nd G n + 1 2 nd G M
85 75 84 anim12d φ n M 1 st G M 1 st G n 2 nd G n 2 nd G M 1 st G M 1 st G n + 1 2 nd G n + 1 2 nd G M
86 85 expcom n M φ 1 st G M 1 st G n 2 nd G n 2 nd G M 1 st G M 1 st G n + 1 2 nd G n + 1 2 nd G M
87 86 a2d n M φ 1 st G M 1 st G n 2 nd G n 2 nd G M φ 1 st G M 1 st G n + 1 2 nd G n + 1 2 nd G M
88 12 18 24 30 39 87 uzind4i N M φ 1 st G M 1 st G N 2 nd G N 2 nd G M
89 6 88 mpcom φ 1 st G M 1 st G N 2 nd G N 2 nd G M