Metamath Proof Explorer


Theorem rusgr0edg

Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V = Vtx G
rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
Assertion rusgr0edg G RegUSGraph 0 P V N P L N = 0

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V = Vtx G
2 rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
3 simp2 G RegUSGraph 0 P V N P V
4 nnnn0 N N 0
5 4 3ad2ant3 G RegUSGraph 0 P V N N 0
6 1 2 rusgrnumwwlklem P V N 0 P L N = w N WWalksN G | w 0 = P
7 3 5 6 syl2anc G RegUSGraph 0 P V N P L N = w N WWalksN G | w 0 = P
8 rusgrusgr G RegUSGraph 0 G USGraph
9 usgr0edg0rusgr G USGraph G RegUSGraph 0 Edg G =
10 9 biimpcd G RegUSGraph 0 G USGraph Edg G =
11 8 10 mpd G RegUSGraph 0 Edg G =
12 0enwwlksnge1 Edg G = N N WWalksN G =
13 11 12 sylan G RegUSGraph 0 N N WWalksN G =
14 eleq2 N WWalksN G = w N WWalksN G w
15 noel ¬ w
16 15 pm2.21i w ¬ w 0 = P
17 14 16 syl6bi N WWalksN G = w N WWalksN G ¬ w 0 = P
18 13 17 syl G RegUSGraph 0 N w N WWalksN G ¬ w 0 = P
19 18 3adant2 G RegUSGraph 0 P V N w N WWalksN G ¬ w 0 = P
20 19 ralrimiv G RegUSGraph 0 P V N w N WWalksN G ¬ w 0 = P
21 rabeq0 w N WWalksN G | w 0 = P = w N WWalksN G ¬ w 0 = P
22 20 21 sylibr G RegUSGraph 0 P V N w N WWalksN G | w 0 = P =
23 22 fveq2d G RegUSGraph 0 P V N w N WWalksN G | w 0 = P =
24 hash0 = 0
25 23 24 eqtrdi G RegUSGraph 0 P V N w N WWalksN G | w 0 = P = 0
26 7 25 eqtrd G RegUSGraph 0 P V N P L N = 0