Metamath Proof Explorer


Theorem rusgr1vtx

Description: If a k-regular simple graph has only one vertex, then k must be 0 . (Contributed by Alexander van der Vekens, 4-Sep-2018) (Revised by AV, 27-Dec-2020)

Ref Expression
Assertion rusgr1vtx VtxG=1GRegUSGraphKK=0

Proof

Step Hyp Ref Expression
1 nbgr1vtx VtxG=1GNeighbVtxv=
2 1 ralrimivw VtxG=1vVtxGGNeighbVtxv=
3 eqid VtxG=VtxG
4 3 rusgrpropnb GRegUSGraphKGUSGraphK0*vVtxGGNeighbVtxv=K
5 2 4 anim12i VtxG=1GRegUSGraphKvVtxGGNeighbVtxv=GUSGraphK0*vVtxGGNeighbVtxv=K
6 fvex VtxGV
7 rusgr1vtxlem vVtxGGNeighbVtxv=KvVtxGGNeighbVtxv=VtxGVVtxG=1K=0
8 7 ex vVtxGGNeighbVtxv=KvVtxGGNeighbVtxv=VtxGVVtxG=1K=0
9 6 8 mpani vVtxGGNeighbVtxv=KvVtxGGNeighbVtxv=VtxG=1K=0
10 9 ex vVtxGGNeighbVtxv=KvVtxGGNeighbVtxv=VtxG=1K=0
11 10 3ad2ant3 GUSGraphK0*vVtxGGNeighbVtxv=KvVtxGGNeighbVtxv=VtxG=1K=0
12 11 com13 VtxG=1vVtxGGNeighbVtxv=GUSGraphK0*vVtxGGNeighbVtxv=KK=0
13 12 impd VtxG=1vVtxGGNeighbVtxv=GUSGraphK0*vVtxGGNeighbVtxv=KK=0
14 13 adantr VtxG=1GRegUSGraphKvVtxGGNeighbVtxv=GUSGraphK0*vVtxGGNeighbVtxv=KK=0
15 5 14 mpd VtxG=1GRegUSGraphKK=0