Metamath Proof Explorer


Theorem rusgr1vtxlem

Description: Lemma for rusgr1vtx . (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rusgr1vtxlem v V A = K v V A = V W V = 1 K = 0

Proof

Step Hyp Ref Expression
1 r19.26 v V A = K A = v V A = K v V A =
2 fveqeq2 A = A = K = K
3 2 biimpac A = K A = = K
4 3 ralimi v V A = K A = v V = K
5 hash1n0 V W V = 1 V
6 rspn0 V v V = K = K
7 5 6 syl V W V = 1 v V = K = K
8 hash0 = 0
9 eqeq1 = K = 0 K = 0
10 8 9 mpbii = K K = 0
11 7 10 syl6com v V = K V W V = 1 K = 0
12 4 11 syl v V A = K A = V W V = 1 K = 0
13 1 12 sylbir v V A = K v V A = V W V = 1 K = 0
14 13 imp v V A = K v V A = V W V = 1 K = 0