Database
GRAPH THEORY
Undirected graphs
Regular graphs
rusgr1vtxlem
Next ⟩
rusgr1vtx
Metamath Proof Explorer
Ascii
Unicode
Theorem
rusgr1vtxlem
Description:
Lemma for
rusgr1vtx
.
(Contributed by
AV
, 27-Dec-2020)
Ref
Expression
Assertion
rusgr1vtxlem
⊢
∀
v
∈
V
A
=
K
∧
∀
v
∈
V
A
=
∅
∧
V
∈
W
∧
V
=
1
→
K
=
0
Proof
Step
Hyp
Ref
Expression
1
r19.26
⊢
∀
v
∈
V
A
=
K
∧
A
=
∅
↔
∀
v
∈
V
A
=
K
∧
∀
v
∈
V
A
=
∅
2
fveqeq2
⊢
A
=
∅
→
A
=
K
↔
∅
=
K
3
2
biimpac
⊢
A
=
K
∧
A
=
∅
→
∅
=
K
4
3
ralimi
⊢
∀
v
∈
V
A
=
K
∧
A
=
∅
→
∀
v
∈
V
∅
=
K
5
hash1n0
⊢
V
∈
W
∧
V
=
1
→
V
≠
∅
6
rspn0
⊢
V
≠
∅
→
∀
v
∈
V
∅
=
K
→
∅
=
K
7
5
6
syl
⊢
V
∈
W
∧
V
=
1
→
∀
v
∈
V
∅
=
K
→
∅
=
K
8
hash0
⊢
∅
=
0
9
eqeq1
⊢
∅
=
K
→
∅
=
0
↔
K
=
0
10
8
9
mpbii
⊢
∅
=
K
→
K
=
0
11
7
10
syl6com
⊢
∀
v
∈
V
∅
=
K
→
V
∈
W
∧
V
=
1
→
K
=
0
12
4
11
syl
⊢
∀
v
∈
V
A
=
K
∧
A
=
∅
→
V
∈
W
∧
V
=
1
→
K
=
0
13
1
12
sylbir
⊢
∀
v
∈
V
A
=
K
∧
∀
v
∈
V
A
=
∅
→
V
∈
W
∧
V
=
1
→
K
=
0
14
13
imp
⊢
∀
v
∈
V
A
=
K
∧
∀
v
∈
V
A
=
∅
∧
V
∈
W
∧
V
=
1
→
K
=
0