Metamath Proof Explorer


Theorem rusgrnumwrdl2

Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 6-May-2021)

Ref Expression
Hypothesis rusgrnumwrdl2.v V = Vtx G
Assertion rusgrnumwrdl2 G RegUSGraph K P V w Word V | w = 2 w 0 = P w 0 w 1 Edg G = K

Proof

Step Hyp Ref Expression
1 rusgrnumwrdl2.v V = Vtx G
2 1 fvexi V V
3 2 wrdexi Word V V
4 3 rabex w Word V | w = 2 w 0 = P w 0 w 1 Edg G V
5 2 a1i G RegUSGraph K V V
6 wrd2f1tovbij V V P V f f : w Word V | w = 2 w 0 = P w 0 w 1 Edg G 1-1 onto s V | P s Edg G
7 5 6 sylan G RegUSGraph K P V f f : w Word V | w = 2 w 0 = P w 0 w 1 Edg G 1-1 onto s V | P s Edg G
8 hasheqf1oi w Word V | w = 2 w 0 = P w 0 w 1 Edg G V f f : w Word V | w = 2 w 0 = P w 0 w 1 Edg G 1-1 onto s V | P s Edg G w Word V | w = 2 w 0 = P w 0 w 1 Edg G = s V | P s Edg G
9 4 7 8 mpsyl G RegUSGraph K P V w Word V | w = 2 w 0 = P w 0 w 1 Edg G = s V | P s Edg G
10 1 rusgrpropadjvtx G RegUSGraph K G USGraph K 0 * p V s V | p s Edg G = K
11 preq1 p = P p s = P s
12 11 eleq1d p = P p s Edg G P s Edg G
13 12 rabbidv p = P s V | p s Edg G = s V | P s Edg G
14 13 fveqeq2d p = P s V | p s Edg G = K s V | P s Edg G = K
15 14 rspccv p V s V | p s Edg G = K P V s V | P s Edg G = K
16 15 3ad2ant3 G USGraph K 0 * p V s V | p s Edg G = K P V s V | P s Edg G = K
17 10 16 syl G RegUSGraph K P V s V | P s Edg G = K
18 17 imp G RegUSGraph K P V s V | P s Edg G = K
19 9 18 eqtrd G RegUSGraph K P V w Word V | w = 2 w 0 = P w 0 w 1 Edg G = K