Metamath Proof Explorer


Theorem rusgrnumwwlk

Description: In a K-regular graph, the number of walks of a fixed length N from a fixed vertex is K to the power of N . By definition, ( N WWalksN G ) is the set of walks (as words) with length N , and ( P L N ) is the number of walks with length N starting at the vertex P . Because of the K-regularity, a walk can be continued in K different ways at the end vertex of the walk, and this repeated N times.

This theorem even holds for N = 0 : in this case, the walk consists of only one vertex P , so the number of walks of length N = 0 starting with P is ( K ^ 0 ) = 1 . (Contributed by Alexander van der Vekens, 24-Aug-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V = Vtx G
rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
Assertion rusgrnumwwlk G RegUSGraph K V Fin P V N 0 P L N = K N

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V = Vtx G
2 rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
3 oveq2 x = 0 P L x = P L 0
4 oveq2 x = 0 K x = K 0
5 3 4 eqeq12d x = 0 P L x = K x P L 0 = K 0
6 5 imbi2d x = 0 V Fin P V G RegUSGraph K P L x = K x V Fin P V G RegUSGraph K P L 0 = K 0
7 oveq2 x = y P L x = P L y
8 oveq2 x = y K x = K y
9 7 8 eqeq12d x = y P L x = K x P L y = K y
10 9 imbi2d x = y V Fin P V G RegUSGraph K P L x = K x V Fin P V G RegUSGraph K P L y = K y
11 oveq2 x = y + 1 P L x = P L y + 1
12 oveq2 x = y + 1 K x = K y + 1
13 11 12 eqeq12d x = y + 1 P L x = K x P L y + 1 = K y + 1
14 13 imbi2d x = y + 1 V Fin P V G RegUSGraph K P L x = K x V Fin P V G RegUSGraph K P L y + 1 = K y + 1
15 oveq2 x = N P L x = P L N
16 oveq2 x = N K x = K N
17 15 16 eqeq12d x = N P L x = K x P L N = K N
18 17 imbi2d x = N V Fin P V G RegUSGraph K P L x = K x V Fin P V G RegUSGraph K P L N = K N
19 rusgrusgr G RegUSGraph K G USGraph
20 usgruspgr G USGraph G USHGraph
21 19 20 syl G RegUSGraph K G USHGraph
22 simpr V Fin P V P V
23 1 2 rusgrnumwwlkb0 G USHGraph P V P L 0 = 1
24 21 22 23 syl2anr V Fin P V G RegUSGraph K P L 0 = 1
25 simpl V Fin P V V Fin
26 25 19 anim12ci V Fin P V G RegUSGraph K G USGraph V Fin
27 1 isfusgr G FinUSGraph G USGraph V Fin
28 26 27 sylibr V Fin P V G RegUSGraph K G FinUSGraph
29 simpr V Fin P V G RegUSGraph K G RegUSGraph K
30 ne0i P V V
31 30 ad2antlr V Fin P V G RegUSGraph K V
32 1 frusgrnn0 G FinUSGraph G RegUSGraph K V K 0
33 32 nn0cnd G FinUSGraph G RegUSGraph K V K
34 28 29 31 33 syl3anc V Fin P V G RegUSGraph K K
35 34 exp0d V Fin P V G RegUSGraph K K 0 = 1
36 24 35 eqtr4d V Fin P V G RegUSGraph K P L 0 = K 0
37 simpl V Fin P V G RegUSGraph K V Fin P V
38 37 anim1i V Fin P V G RegUSGraph K y 0 V Fin P V y 0
39 df-3an V Fin P V y 0 V Fin P V y 0
40 38 39 sylibr V Fin P V G RegUSGraph K y 0 V Fin P V y 0
41 1 2 rusgrnumwwlks G RegUSGraph K V Fin P V y 0 P L y = K y P L y + 1 = K y + 1
42 29 40 41 syl2an2r V Fin P V G RegUSGraph K y 0 P L y = K y P L y + 1 = K y + 1
43 42 expcom y 0 V Fin P V G RegUSGraph K P L y = K y P L y + 1 = K y + 1
44 43 a2d y 0 V Fin P V G RegUSGraph K P L y = K y V Fin P V G RegUSGraph K P L y + 1 = K y + 1
45 6 10 14 18 36 44 nn0ind N 0 V Fin P V G RegUSGraph K P L N = K N
46 45 expd N 0 V Fin P V G RegUSGraph K P L N = K N
47 46 com12 V Fin P V N 0 G RegUSGraph K P L N = K N
48 47 3impia V Fin P V N 0 G RegUSGraph K P L N = K N
49 48 impcom G RegUSGraph K V Fin P V N 0 P L N = K N