Metamath Proof Explorer


Theorem rusgrnumwwlkb0

Description: Induction base 0 for rusgrnumwwlk . Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V = Vtx G
rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
Assertion rusgrnumwwlkb0 G USHGraph P V P L 0 = 1

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V = Vtx G
2 rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
3 simpr G USHGraph P V P V
4 0nn0 0 0
5 1 2 rusgrnumwwlklem P V 0 0 P L 0 = w 0 WWalksN G | w 0 = P
6 3 4 5 sylancl G USHGraph P V P L 0 = w 0 WWalksN G | w 0 = P
7 df-rab w 0 WWalksN G | w 0 = P = w | w 0 WWalksN G w 0 = P
8 7 a1i G USHGraph P V w 0 WWalksN G | w 0 = P = w | w 0 WWalksN G w 0 = P
9 wwlksn0s 0 WWalksN G = w Word Vtx G | w = 1
10 9 a1i G USHGraph P V 0 WWalksN G = w Word Vtx G | w = 1
11 10 eleq2d G USHGraph P V w 0 WWalksN G w w Word Vtx G | w = 1
12 rabid w w Word Vtx G | w = 1 w Word Vtx G w = 1
13 11 12 bitrdi G USHGraph P V w 0 WWalksN G w Word Vtx G w = 1
14 13 anbi1d G USHGraph P V w 0 WWalksN G w 0 = P w Word Vtx G w = 1 w 0 = P
15 14 abbidv G USHGraph P V w | w 0 WWalksN G w 0 = P = w | w Word Vtx G w = 1 w 0 = P
16 wrdl1s1 P Vtx G v = ⟨“ P ”⟩ v Word Vtx G v = 1 v 0 = P
17 df-3an v Word Vtx G v = 1 v 0 = P v Word Vtx G v = 1 v 0 = P
18 16 17 bitr2di P Vtx G v Word Vtx G v = 1 v 0 = P v = ⟨“ P ”⟩
19 vex v V
20 eleq1w w = v w Word Vtx G v Word Vtx G
21 fveqeq2 w = v w = 1 v = 1
22 20 21 anbi12d w = v w Word Vtx G w = 1 v Word Vtx G v = 1
23 fveq1 w = v w 0 = v 0
24 23 eqeq1d w = v w 0 = P v 0 = P
25 22 24 anbi12d w = v w Word Vtx G w = 1 w 0 = P v Word Vtx G v = 1 v 0 = P
26 19 25 elab v w | w Word Vtx G w = 1 w 0 = P v Word Vtx G v = 1 v 0 = P
27 velsn v ⟨“ P ”⟩ v = ⟨“ P ”⟩
28 18 26 27 3bitr4g P Vtx G v w | w Word Vtx G w = 1 w 0 = P v ⟨“ P ”⟩
29 28 1 eleq2s P V v w | w Word Vtx G w = 1 w 0 = P v ⟨“ P ”⟩
30 29 eqrdv P V w | w Word Vtx G w = 1 w 0 = P = ⟨“ P ”⟩
31 30 adantl G USHGraph P V w | w Word Vtx G w = 1 w 0 = P = ⟨“ P ”⟩
32 8 15 31 3eqtrd G USHGraph P V w 0 WWalksN G | w 0 = P = ⟨“ P ”⟩
33 32 fveq2d G USHGraph P V w 0 WWalksN G | w 0 = P = ⟨“ P ”⟩
34 s1cl P V ⟨“ P ”⟩ Word V
35 hashsng ⟨“ P ”⟩ Word V ⟨“ P ”⟩ = 1
36 34 35 syl P V ⟨“ P ”⟩ = 1
37 36 adantl G USHGraph P V ⟨“ P ”⟩ = 1
38 6 33 37 3eqtrd G USHGraph P V P L 0 = 1