Metamath Proof Explorer


Theorem rusgrnumwwlklem

Description: Lemma for rusgrnumwwlk etc. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V = Vtx G
rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
Assertion rusgrnumwwlklem P V N 0 P L N = w N WWalksN G | w 0 = P

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V = Vtx G
2 rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
3 oveq1 n = N n WWalksN G = N WWalksN G
4 3 adantl v = P n = N n WWalksN G = N WWalksN G
5 eqeq2 v = P w 0 = v w 0 = P
6 5 adantr v = P n = N w 0 = v w 0 = P
7 4 6 rabeqbidv v = P n = N w n WWalksN G | w 0 = v = w N WWalksN G | w 0 = P
8 7 fveq2d v = P n = N w n WWalksN G | w 0 = v = w N WWalksN G | w 0 = P
9 fvex w N WWalksN G | w 0 = P V
10 8 2 9 ovmpoa P V N 0 P L N = w N WWalksN G | w 0 = P