Metamath Proof Explorer


Theorem rusgrprop

Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 18-Dec-2020)

Ref Expression
Assertion rusgrprop G RegUSGraph K G USGraph G RegGraph K

Proof

Step Hyp Ref Expression
1 df-rusgr RegUSGraph = g k | g USGraph g RegGraph k
2 1 bropaex12 G RegUSGraph K G V K V
3 isrusgr G V K V G RegUSGraph K G USGraph G RegGraph K
4 3 biimpd G V K V G RegUSGraph K G USGraph G RegGraph K
5 2 4 mpcom G RegUSGraph K G USGraph G RegGraph K