Metamath Proof Explorer


Theorem rusgrpropadjvtx

Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v V=VtxG
Assertion rusgrpropadjvtx GRegUSGraphKGUSGraphK0*vVkV|vkEdgG=K

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v V=VtxG
2 1 rusgrpropnb GRegUSGraphKGUSGraphK0*vVGNeighbVtxv=K
3 simp1 GUSGraphK0*vVGNeighbVtxv=KGUSGraph
4 simp2 GUSGraphK0*vVGNeighbVtxv=KK0*
5 eqid EdgG=EdgG
6 1 5 nbusgrvtx GUSGraphvVGNeighbVtxv=kV|vkEdgG
7 6 fveq2d GUSGraphvVGNeighbVtxv=kV|vkEdgG
8 7 eqcomd GUSGraphvVkV|vkEdgG=GNeighbVtxv
9 8 adantr GUSGraphvVGNeighbVtxv=KkV|vkEdgG=GNeighbVtxv
10 simpr GUSGraphvVGNeighbVtxv=KGNeighbVtxv=K
11 9 10 eqtrd GUSGraphvVGNeighbVtxv=KkV|vkEdgG=K
12 11 ex GUSGraphvVGNeighbVtxv=KkV|vkEdgG=K
13 12 ralimdva GUSGraphvVGNeighbVtxv=KvVkV|vkEdgG=K
14 13 imp GUSGraphvVGNeighbVtxv=KvVkV|vkEdgG=K
15 14 3adant2 GUSGraphK0*vVGNeighbVtxv=KvVkV|vkEdgG=K
16 3 4 15 3jca GUSGraphK0*vVGNeighbVtxv=KGUSGraphK0*vVkV|vkEdgG=K
17 2 16 syl GRegUSGraphKGUSGraphK0*vVkV|vkEdgG=K