Metamath Proof Explorer


Theorem rusgrpropedg

Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v V = Vtx G
Assertion rusgrpropedg G RegUSGraph K G USGraph K 0 * v V e Edg G | v e = K

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v V = Vtx G
2 1 rusgrpropnb G RegUSGraph K G USGraph K 0 * v V G NeighbVtx v = K
3 eqid Edg G = Edg G
4 1 3 nbedgusgr G USGraph v V G NeighbVtx v = e Edg G | v e
5 4 eqeq1d G USGraph v V G NeighbVtx v = K e Edg G | v e = K
6 5 biimpd G USGraph v V G NeighbVtx v = K e Edg G | v e = K
7 6 ralimdva G USGraph v V G NeighbVtx v = K v V e Edg G | v e = K
8 7 adantr G USGraph K 0 * v V G NeighbVtx v = K v V e Edg G | v e = K
9 8 imdistani G USGraph K 0 * v V G NeighbVtx v = K G USGraph K 0 * v V e Edg G | v e = K
10 df-3an G USGraph K 0 * v V G NeighbVtx v = K G USGraph K 0 * v V G NeighbVtx v = K
11 df-3an G USGraph K 0 * v V e Edg G | v e = K G USGraph K 0 * v V e Edg G | v e = K
12 9 10 11 3imtr4i G USGraph K 0 * v V G NeighbVtx v = K G USGraph K 0 * v V e Edg G | v e = K
13 2 12 syl G RegUSGraph K G USGraph K 0 * v V e Edg G | v e = K