Metamath Proof Explorer


Theorem rusgrpropnb

Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v V = Vtx G
Assertion rusgrpropnb G RegUSGraph K G USGraph K 0 * v V G NeighbVtx v = K

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v V = Vtx G
2 eqid VtxDeg G = VtxDeg G
3 1 2 rusgrprop0 G RegUSGraph K G USGraph K 0 * v V VtxDeg G v = K
4 simp1 G USGraph K 0 * v V VtxDeg G v = K G USGraph
5 simp2 G USGraph K 0 * v V VtxDeg G v = K K 0 *
6 1 hashnbusgrvd G USGraph v V G NeighbVtx v = VtxDeg G v
7 6 adantlr G USGraph K 0 * v V G NeighbVtx v = VtxDeg G v
8 eqeq2 K = VtxDeg G v G NeighbVtx v = K G NeighbVtx v = VtxDeg G v
9 8 eqcoms VtxDeg G v = K G NeighbVtx v = K G NeighbVtx v = VtxDeg G v
10 7 9 syl5ibrcom G USGraph K 0 * v V VtxDeg G v = K G NeighbVtx v = K
11 10 ralimdva G USGraph K 0 * v V VtxDeg G v = K v V G NeighbVtx v = K
12 11 3impia G USGraph K 0 * v V VtxDeg G v = K v V G NeighbVtx v = K
13 4 5 12 3jca G USGraph K 0 * v V VtxDeg G v = K G USGraph K 0 * v V G NeighbVtx v = K
14 3 13 syl G RegUSGraph K G USGraph K 0 * v V G NeighbVtx v = K