Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by GG, 2-Sep-2024)

Ref Expression
Assertion rzal A = x A φ

Proof

Step Hyp Ref Expression
1 biidd y = x
2 1 eqabbw A = y | x x A
3 2 biimpi A = y | x x A
4 nbfal ¬ x A x A
5 pm2.21 ¬ x A x A φ
6 4 5 sylbir x A x A φ
7 3 6 sylg A = y | x x A φ
8 dfnul4 = y |
9 8 eqeq2i A = A = y |
10 df-ral x A φ x x A φ
11 7 9 10 3imtr4i A = x A φ