Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rzal A = x A φ

Proof

Step Hyp Ref Expression
1 dfcleq A = y | x x A x y |
2 1 biimpi A = y | x x A x y |
3 df-clab x y | x y
4 sbv x y
5 3 4 bitri x y |
6 5 bibi2i x A x y | x A
7 nbfal ¬ x A x A
8 pm2.21 ¬ x A x A φ
9 7 8 sylbir x A x A φ
10 6 9 sylbi x A x y | x A φ
11 2 10 sylg A = y | x x A φ
12 dfnul4 = y |
13 12 eqeq2i A = A = y |
14 df-ral x A φ x x A φ
15 11 13 14 3imtr4i A = x A φ