Metamath Proof Explorer


Theorem rzgrp

Description: The quotient group RR / ZZ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypothesis rzgrp.r R = fld / 𝑠 fld ~ QG
Assertion rzgrp R Grp

Proof

Step Hyp Ref Expression
1 rzgrp.r R = fld / 𝑠 fld ~ QG
2 zsubrg SubRing fld
3 zssre
4 resubdrg SubRing fld fld DivRing
5 4 simpli SubRing fld
6 df-refld fld = fld 𝑠
7 6 subsubrg SubRing fld SubRing fld SubRing fld
8 5 7 ax-mp SubRing fld SubRing fld
9 2 3 8 mpbir2an SubRing fld
10 subrgsubg SubRing fld SubGrp fld
11 9 10 ax-mp SubGrp fld
12 simpl x y x
13 12 recnd x y x
14 simpr x y y
15 14 recnd x y y
16 13 15 addcomd x y x + y = y + x
17 16 eleq1d x y x + y y + x
18 17 rgen2 x y x + y y + x
19 rebase = Base fld
20 replusg + = + fld
21 19 20 isnsg NrmSGrp fld SubGrp fld x y x + y y + x
22 11 18 21 mpbir2an NrmSGrp fld
23 1 qusgrp NrmSGrp fld R Grp
24 22 23 ax-mp R Grp