Metamath Proof Explorer


Theorem s111

Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s111 S A T A ⟨“ S ”⟩ = ⟨“ T ”⟩ S = T

Proof

Step Hyp Ref Expression
1 s1val S A ⟨“ S ”⟩ = 0 S
2 s1val T A ⟨“ T ”⟩ = 0 T
3 1 2 eqeqan12d S A T A ⟨“ S ”⟩ = ⟨“ T ”⟩ 0 S = 0 T
4 opex 0 S V
5 sneqbg 0 S V 0 S = 0 T 0 S = 0 T
6 4 5 mp1i S A T A 0 S = 0 T 0 S = 0 T
7 0z 0
8 eqid 0 = 0
9 opthg 0 S A 0 S = 0 T 0 = 0 S = T
10 9 baibd 0 S A 0 = 0 0 S = 0 T S = T
11 8 10 mpan2 0 S A 0 S = 0 T S = T
12 7 11 mpan S A 0 S = 0 T S = T
13 12 adantr S A T A 0 S = 0 T S = T
14 3 6 13 3bitrd S A T A ⟨“ S ”⟩ = ⟨“ T ”⟩ S = T