Metamath Proof Explorer


Theorem s1cli

Description: A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1cli ⟨“ A ”⟩ Word V

Proof

Step Hyp Ref Expression
1 ids1 ⟨“ A ”⟩ = ⟨“ I A ”⟩
2 fvex I A V
3 s1cl I A V ⟨“ I A ”⟩ Word V
4 2 3 ax-mp ⟨“ I A ”⟩ Word V
5 1 4 eqeltri ⟨“ A ”⟩ Word V