Metamath Proof Explorer


Theorem s1co

Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1co S A F : A B F ⟨“ S ”⟩ = ⟨“ F S ”⟩

Proof

Step Hyp Ref Expression
1 s1val S A ⟨“ S ”⟩ = 0 S
2 0cn 0
3 xpsng 0 S A 0 × S = 0 S
4 2 3 mpan S A 0 × S = 0 S
5 1 4 eqtr4d S A ⟨“ S ”⟩ = 0 × S
6 5 adantr S A F : A B ⟨“ S ”⟩ = 0 × S
7 6 coeq2d S A F : A B F ⟨“ S ”⟩ = F 0 × S
8 fvex F S V
9 s1val F S V ⟨“ F S ”⟩ = 0 F S
10 8 9 ax-mp ⟨“ F S ”⟩ = 0 F S
11 c0ex 0 V
12 11 8 xpsn 0 × F S = 0 F S
13 10 12 eqtr4i ⟨“ F S ”⟩ = 0 × F S
14 ffn F : A B F Fn A
15 id S A S A
16 fcoconst F Fn A S A F 0 × S = 0 × F S
17 14 15 16 syl2anr S A F : A B F 0 × S = 0 × F S
18 13 17 eqtr4id S A F : A B ⟨“ F S ”⟩ = F 0 × S
19 7 18 eqtr4d S A F : A B F ⟨“ S ”⟩ = ⟨“ F S ”⟩